September 15, 2019

Change is in the Future of Healthcare Organizations

Changes in Healthcare Organizations of the Future

From the diseases we face to the technologies we use to treat them, healthcare in the United States is changing rapidly.

Frank Magliochetti confirms: that just a few short decades ago, most people received care from their family doctor and paid for it through private insurance provided by an employer. Diagnostic tests were limited to x-rays and a few blood tests, and treatments involved first generation drug therapies and invasive surgical procedures. Patient records were kept in a dusty basement offsite, and the information they contained was accessed only to provide continuing care to that individual patient. Computerized medical records, advanced fMRI and CT scanning, and robot surgery common today was the stuff of science fiction just 20 years ago.

Tomorrow’s healthcare landscape will be decidedly different from the care provided today, and light-years away from the healthcare of our parent’s day. A number of various factors, such as demographics, legislation, and technology, affect nearly every level of healthcare and affect nearly every person working in healthcare. These factors will drive the major changes occurring in healthcare over the next two to three decades.

The diseases people face will likely change as well. Diseases that were almost unheard of in younger populations years ago, such as obesity, diabetes and heart disease, will become major health issues across the generations.

The use of hospital services will likely grow significantly in the next decade, largely because of the increase in Medicare beneficiaries. The cost of hospital care will also rise; The George Washington University School of Business predicts this cost will increase from 0.9 percent to 2.4 percent of the budget by 2025.

Care will likely center on the patient’s experience, rather than on the needs of the institutions providing that care. Patients will have detailed information, on par with that collected by their doctor or hospital, about their own health and about health in general. The patients of tomorrow will also enjoy greater ownership of that data, and they will play a greater role in the decision-making process when it comes to their own health, well-being and medical care.

The Healthcare of Tomorrow

Healthcare in 2040 is only 20 years away, but it will be vastly different from what we have today. Two decades ago, we could not have envisioned the wearable devices that are commonplace today; medical technology will take us places in the next two decade that we cannot begin to imagine today. The next generation of sensors will likely move from wearable devices to invisible, always-on sensors embedded in devices surrounding us – or even embedded inside of us; medtech companies are already investigating ways to incorporate these always-on biosensors and software into devices that generate, gather and share health data.

By 2040, independent streams of health data will merge to create a multifaceted, complex and highly personalized picture of each individual’s well-being, for example. Artificial intelligence (AI) will allow for wide scale analysis of vast amounts of information and the creation of personalized insights into consumer health. The availability of this data and personalized insights can enable precision real-time interventions that allows patients and their caregivers to get ahead of sickness early enough to avoid catastrophic disease. Armed with a lifetime of highly detailed information about their own health and with a natural penchant for mobility, consumers of 2040 will also probably demand that their health information be portable.

Because of the demand for mobility and information management, technology such as interoperable data and AI will be major drivers of change, but only if the open platforms necessary for mobility and AI are secure. Information technology (IT) professionals will continually develop technologies that process threat data more efficiently and more accurately predict criminal activity.

While nobody can predict exactly what the healthcare landscape will look like in 2040 and beyond, nearly everyone can agree that it will be vastly different from the care we receive today.

Source

https://healthcaremba.gwu.edu/blog/how-we-can-expect-the-healthcare-industry-to-change-in-the-future/

To View Frank Magliochetti Press Releases Please CLICK HERE

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

Healthcare Industry Structural Changes Are Coming

The Structure of the Healthcare Industry will Change Radically

The healthcare industry is changing at a blistering pace. Healthcare policies, technologies, insurance coverage, and the new focus on patient experience have triggered the evolution of healthcare into something yesterday’s providers would never recognize. And, chances are, the healthcare of tomorrow will look drastically different than the care provided today.

Change had come slowly to healthcare industry legislation in the nation’s early years. The first attempt at national health insurance came about in 1905, with the formation of the American Association for Labor Legislation; Speaker of the House Thaddeus Sweet vetoed the bill. The next major change in the healthcare industry didn’t come along until 1965 when, after 20 years of heated debate in Congress, President Lyndon B. Johnson initiated legislation introducing Medicare and Medicaid. The 2010 Patient Protection and Affordable Care Act was the last major healthcare legislation.

While changes to healthcare law and healthcare insurance had came slowly, the nation’s demographics and need for medical care is now changing rapidly. Furthermore, advances in research and medical technology have fueled an astonishing metamorphosis in healthcare.

Factors Contributing to the Changing Landscape of Healthcare

Perhaps the most notable change in healthcare is its explosive growth: healthcare became the largest employer in the United States in the third quarter of 2018, according to The Atlantic.

The nation’s aging population is a major driver of the healthcare job boom. By the year 2025, one-quarter of the workforce will be older than 55. By 2030, more than 170 million people in the United States will have at least one chronic health condition, according to the American Hospital Association (AHA). The rising population of older adults, and the increasing number of people with chronic illnesses, will require a growing pool of healthcare workers. In fact, the U.S. Bureau of Labor Statistics (BLS) expects jobs in the healthcare industry to account for a large share of new jobs created through 2026.

Other factors, including the health insurance market and healthcare regulation, will affect the structure of the healthcare industry. About half of the privately insured are covered under self-insured plans, which can vary dramatically.

The healthcare system is also moving towards a financial model based on value, rather than on volume. This shift will change the focus from treating diseases in hospitals to keeping patients healthy and out of the hospital.

Expect Monumental Changes in the Healthcare Industry

To handle these changes, the structure of the healthcare industry will undergo radical transformation in a number of areas, from insurance to the makeup of the board and the role of clinicians in leading renovations within an organization.

Provider organizations offering insurance products will likely experience substantial restructuring because they are essentially creating new businesses in a highly volatile market. In fact, several health systems have already introduced health plans in recent years, according to the Healthcare Financial Management Association.

Organizations without such products are restructuring, creating regionally focused, value-based care teams and enhancing consumer engagement. Moving towards a value-based system requires increased collaboration between health systems and health plans, the implementation of patient-centric technology, increased adoption of virtual care options, and a greater focus on public health. It also requires greater understanding of patient motivation and behavior, so many healthcare organizations will restructure to include patient experience departments.

Changes in organizational structures will manifest themselves in a number of ways. Evolution of an organization’s structure may include centralization and professionalization of the board to look more like boards in other industries, for example. This shift allows senior business leaders with niche expertise to guide healthcare organizations through insurance, risk management, IT, consumer engagement, investments and capital allocation.

Many healthcare organizations are putting physicians in leadership roles, asking their clinicians to lead clinical informatics, care model transformation, and population health management initiatives. In this way, the Chief Medical Officer (CMO) is evolving into the role of Chief Transformation Officer.

While it is nearly impossible to predict where the healthcare industry will be at the end of the 21st Century, it is safe to say that healthcare in the United States will undergo more changes in the next 80 years than it has in the entire history of the nation.

SOURCES:

To View Frank Magliochetti Press Releases Please CLICK HERE

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

Healthcare or IT Business?

Healthcare is Becoming an Information Technology Business

Frank Magliochetti declares that; Health information technology now plays an important role in patient care, payment and research, but it wasn’t always this way. Today’s health information technology represents an evolution in record keeping within the healthcare industry. In 1924, the American College of Surgeons adopted the Minimum Standard Document to ensure the recording of a complete case record that included identifying data, chief complaint, personal and family history, physical examinations, laboratory results and x-rays.

In the 20th Century, those records were written by hand and paper copies were generally stored on or offsite, unless required for a hospitalization, doctor visit or research. Sharing patient information with even one consultant or payer typically meant long hours at the copying machine to create thick envelopes filled with data that could take a substantial amount of time to sort; sharing only pertinent information with multiple parties was next to impossible.

Computers and the internet heralded the information age and electronic health records (EHR), which allowed the mass sharing and analysis of data in an instant and without cumbersome and costly paper. In 2004, President George W. Bush created the Office of the National Coordinator (ONC), which now synchronizes HIT in the U.S. healthcare sector. Passed as part of the larger American Recovery and Reinvestment Act of 2009, the Health Information Technology for Economic and Clinical Health (HITECH) Act created incentives to use health care information technology.

Each of these events paved the way to today’s already robust and rapidly growing information technology business. HITECH seems to have worked – as of 2017, 86 percent of office-based physicians had adopted an EHR and 96 percent of all non-federal, acute care hospitals had a certified health IT department or person, according to the Office of the National Coordinator for Health Information Technology.

Today’s HIT Business

To meet the growing demand on the clinical side, hundreds of healthcare IT software and service companies have sprung up across the country. Healthcare IT Skills lists more than 350 such companies, including EHRs, consulting firms, medical device providers, population health, revenue cycle management, analytics, and more.

Healthcare information technology (HIT) merges electronic systems with healthcare to store, share and analyze patient information. The advanced technology also integrates with practice management software to improve office functions that lead to better patient care. HIT now features patient portals that provides patients with access to their medical history, allows them to make appointments, message their practitioner, view bills and even pay bills online. HIT also includes features to make practitioners’ lives easier, such as ePrescribing, remote patient monitoring, and master patient indexes (MPIs) that connects patient databases with more than one database, which allows different departments within a facility to share all of the data simultaneously. MPIs reduce the need for manual duplication of patient records for filling out claims and decrease errors involving patient information, which can result in fewer patient claim denials.

As with any disruptive technology, healthcare information technology has its drawbacks and its critics. Some complain that EHRs have led to practitioners spending more time sitting in front of a computer than talk with patients. Others bemoan the cumbersome federal regulations involved. The benefits of HIT, however far outweigh its downsides.

Advantages of today’s health information technology include the ability to use big data and data analytics to manage population health manage programs effectively, for example, which is impossible with old-fashioned paper records. HIT can use data and analytics to reduce the incidence of expensive and debilitating chronic health conditions, use cognitive computing and analytics to perform precision medicine (PM) tailored to each patient’s needs, and create a means by which academic researchers to share data in hopes of developing new medical therapies and drugs. Lastly, health information technology allows patients to obtain and use their own health data, and to collaborate more fully in their own care with doctors.

Tomorrow’s HIT companies will use artificial intelligence (AI), virtual simulations, and other emerging technologies to further enhance and improve healthcare. Technologies will include digital insurance markets, price transparency tools, cloud storage that will render costly and insecure data centers obsolete, self-serve mobile applications that will eliminate forms and faxes, and centralized clearinghouses that share information across organizations and state lines. Many of these HIT applications will improve labor productivity and, given the fact that wages account for 56 percent of all healthcare spending, improvements in this area could generate significant economic gains.

Information technology will undoubtedly continue in its growth as an important and increasingly essential part of healthcare. The benefits of HIT will also continue to expand, as researchers, doctors, patients and healthcare companies integrate healthcare information technology into their everyday lives and standard business practices

To View Frank Magliochetti Press Releases Please CLICK HERE

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

Future of Precision Medicine

Will Precision Medicine Become Commonplace?

Will precision medicine become commonplace?

Precision medicine is a relatively new and powerful approach to medical care. Given its current growth rate and potential, precision medicine will likely be commonplace very soon.

Medicine is not always a one-size-fits-all solution – what works for one patient may not work at all for another. Individual differences in biology, environmental factors, and lifestyle may play a role in the risk of disease, affect symptoms, and even influence how well treatment works.

Treatments that shrink tumors or alleviate symptoms of arthritis in some patients, for example, are not always effective for other patients. Precision medicine aims to overcome the influences of biology, environment and lifestyle by matching the right treatments with the right patients.

Precision medicine involves the use of extensive medical testing that identifies unique differences in a patient’s condition, followed by the development of a treatment plan specific to that patient. In other words, doctors will run tests to identify unique characteristics that might make a patient more susceptible or resistant to certain diseases or treatments, and then create personalized treatment plans for each patient.

Precision medicine allows researchers and prescribers to predict which treatments and prevention strategies will work best to treat diseases in which groups of people. In contrast, the one-size-fits-all approach uses treatments and disease strategies designed for the average person.

Past, Present and Future of Precision Medicine

While the term “precision medicine” is relatively new, the concept of providing patient-specific treatment has been around for decades. For example, doctors perform blood tests to match patients with the right type of blood; they have been doing this since the early 1900s.

The advent of modern personalized medicine began about 20 years ago, when oncologists began using targeted therapy to treat HER-2 positive breast cancer. Precision medicine got a boost in 2015 with the introduction of the National Institutes of Health (NIH) Precision Medicine Initiative. NIH introduced the initiative in hopes of moving “the concept of precision medicine into clinical practice.” In other words, the initiative intends to make precision medicine commonplace.

The targeted, personalized approach already has a significant effect on many areas of medicine, including genomics that studies genes and their function, medical devices, and laboratory testing. Patients already benefit from precision medicine, especially patients with cancer. Doctors can use genetic testing to determine if a patient is at high risk for developing certain kinds of cancer, for example. When tests show that a person has a higher risk of cancer, a doctor can suggest ways to lower that risk. Cancerous tumors also provide genetic information that helps doctors develop more effective personalized treatment plans.  

The Precision Medicine Initiative has helped spur the commercial growth of precision medicine. The number of commercialized lab tests, known as predictive biomarker assays, is increasing dramatically. Predictive biomarker assays help doctors, pharmaceutical researchers and manufacturers predict the effectiveness of a treatment in any given patient group. These tests also help classify patients’ unique characteristics, which allow researchers and doctors to come up with the safest, most effective treatment for those specific patients.

Advancements in genome sequencing, an increase in consumer-focused healthcare, and innovations in healthcare information technology (IT) and connectivity have fueled explosive growth in the precision medicine market. Market Watch reports the value of the global precision medicine market at USD 47.43 billion in 2019, and projects the market will grow at a Compound Annual Growth Rate (CAGR) of 12.3 percent to reach a net market size of USD 119.90 billion in 2025.

Precision medicine will also stimulate further research exploring the genetic, environmental, and lifestyle factors that influence the development of disease and response to treatment. This research will likely bring about innovations that make precision medicine commonplace in clinical medicine.

SOURCES

Frank Magliochetti News

Frank Magliochetti News will be centered around reporting on trends, innovations, and news in the healthcare and bio/pharma industries.

Frank Magliochetti News is the latest in a growing network of online publications by Frank.

I’m please we have released Frank Magliochetti News, with so much going on it is my hope that Frank Magliochetti News will shed light on current, relevant, healthcare and pharma industry topics and innovations .  Please take time to head to my personal and corporate sites for news and information.

Earlier this year, Frank was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries.
Media Crush

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com

3D Bioprinter Produces Skin for Tranplants

3D Bioprinter Prints Functional Human Skin Adequate for Transplant

3dprintedskin-frankmagliochetti-healthcareinnovationA team of researchers in Spain reports the development of a new three-dimensional (3D) printer capable of printing human skin suitable for transplant into patients. The printed skin is also suitable for testing drugs and cosmetics.

The team included several groups of researchers, including a group from the Universidad Carlos III de Madrid (UC3M) in Spain. The researchers describe their breakthrough in the scientific journal, Biofabrication.

3D Printing and Skin Production

3D printing has been around since the 1980s, when Charles (Chuck) Hull introduced the first stereolithography apparatus (SLA), but the 3D printing industry is now experience rapid growth with applications in many fields. In medicine, 3D printing holds great promise in someday giving clinicians the ability to produce personalized, complex human tissues and organs on demand. One woman has already received a 3D printed ear from one company, for example, while another frankmagliochettireport-3d-bioprintercompany provides 3D printed implants that the recipient’s body converts to bone.

Three-dimensional printing of human body parts is challenging in a number of ways. Replicating the complexity of anatomical structures is difficult. Ensuring the printed tissue survive transplantation in a living body is another problem.

The scientists in Spain have already engineered plasma-based, two-layered skin used successfully in the treatment of burns and other wounds in a large number of patients. The primary drawback to this method is that it takes 3 weeks to produce enough skin to cover an extensive burn or large wound. Another disadvantage is that the scientists must perform much of the process manually.

3D printing is similar to a desktop computer printer except that the nozzle on the 3D printer exudes biological components rather than ink. These biological components, or bio-inks, are essential to successful 3D printing of human organs and tissues.

To aid in the process, a computer controls the nozzles and flow of biological components so that the nozzles deposit the bio-inks on precise locations on the print bed.

Prints large area of skin in 35 minutes

The authors of the study describe how their 3D printing method generated a 100 x 100 centimeter area of skin in just under 35 minutes.

Like the scientists’ existing plasma-based manual method of producing skin, the 3D printing technology generates two layers of skin – the epidermis and the dermis. The printer starts by producing the epidermis, including the protective outermost layer of keratinized cells, known as the stratum corneum. Next, it prints the thicker, deeper dermis, complete with collagen-producing frank-magliochetti_bioprinter-skinfibroblasts.

The new 3D printing method is faster, but still complex. One of the authors of the report, Juan Francisco del Cañizo of the Hospital General Universitario Gregorio Marañón and Universidad Complutense de Madrid, notes:

“Knowing how to mix the biological components, in what conditions to work with them so that the cells don’t deteriorate, and how to correctly deposit the product is critical to the system.”

The research team tested the printed skin in test tubes and in immunodeficient mice. Transplantation of the printed skin into the mice helped the scientists test the long-term effects in a living animal. In both tests, the 3D printed skin was very similar to human skin and indistinguishable from the manually produced bi-layered skin from plasma.

There are two main potential uses for this 3D skin – to produce skin for research and laboratory testing of drugs and cosmetics, and to produce person-specific skin from the patient’s own cells to treat burns and other wounds. The research team is also investigating ways to use the technology to print other human tissues.

Source

http://iopscience.iop.org/article/10.1088/1758-5090/9/1/015006/meta

Frank Magliochetti is Managing Partner for Parcae Capital

  • North Andover, Massachusetts

This column of posts is directed at the Healthcare Industry.  Frank plans to release new sites dedicated to the industry. Frank currently assists companies who are building, restructuring, transforming and resurrecting there business’s. An example of his client base are, Xenetic Biosciences , IPC Medical Corp, Just Fellowship Corp, Environmental Services Inc., Parsons Post House LLC, ClickStream Corporation as well as having a business talk radio show; The Business Architect on the URBN network.

frankmagliochetti_ParcaeCapital

Telemedicince Vs Bedside Assessment

Telemedicine for Assessing Levels of Consciousness in Comatose Patients: How Does it Compare to Bedside Assessment?

Effective care for comatose patients in intensive care units (ICUs) depends on proper intervention based on reliable assessment. Researchers recently conducted a study at Mayo Clinic Hospital in Arizona to compare the effectiveness of using telemedicine to assess levels of consciousness in comatose patients with standard bedside assessment.

Proper intervention relies on the ability to recognize changes in a comatose patient’s clinical status quickly. This had usually meant that, in order to complete an assessment, the practitioner needed to be in the same room. Advanced medical technology is changing all that and robotic medicine now allows clinicians to assess patients from across the hospital or from across the world.frankmagliochetti_Telemedice_HealthcareTrends-Innovations

Telemedicine has been around since the 1960s, when NASA built telemedicine technology into astronauts’ suits. Prior to this technology, astronauts had to rely on crewmates for an accurate diagnosis. Monitors in the suits sent biometric information about the wearer back to earth for assessment.

Computers have revolutionized telemedicine and the internet helps doctors assess patients living in remote places. This is especially helpful for patients living in underserved areas.

Despite major advances, many still worry about the effectiveness in using this technology for the most critically ill patients. A new study published in Telemedicine and e-Health should help to dispel this fear, with researchers showing that robotic telemedicine can be used successfully to complete assessments in comatose ICU patients.

Testing the Reliability of Telemedicine in the Assessment of Levels of Consciousness

Researchers enrolled 100 patients from Mayo Clinic Hospital in Arizona into the study, which occurred over a 15-month timeframe. Mean age of patient participants was 70.8 years. On average, each examination took just over 5 minutes.

Sixteen medical doctors also participated by using two scoring systems, the Glasgow Coma Scale (GCS) and the Full Outline of UnResponsiveness (FOUR) score, to assess patients’ levels of consciousness. The researchers randomly assigned two practitioners to each patient; one doctor used real-time audio and a visual robotic telemedicine system to perform the assessment and the other clinician conducted an assessment at the patient’s bedside. Each used GCS and FOUR scales.

The researchers used paired t-test and Pearson correlation coefficient (PCC) to compare the GCS and FOUR scores between bedside and Telemedicine_FrankMAgliochetti-HealthcareReportremote physician.

Differences in GCS and FOUR scores between remote and beside assessment were small. The mean Glasgow Coma Scale score at bedside was 7.5 while the mean GCS score for the remote examination was 7.23. Scores were comparable in the FOUR total scores too, with a mean bedside score of 9.63 and a mean remote score of 9.21.

The researchers also asked the clinicians about their overall satisfaction and ease of use. Ninety-five percent of remote providers rated GCS and 89% rated FOUR score as good (4/5).

Conclusions

The study is the first to evaluate the effectiveness of telemedicine in assessing patients with depressed levels of consciousness. The results suggest that doctors can reliably assess levels of consciousness in comatose patients using existing robotic telemedicine technology. Healthcare providers could adopt telemedicine to help evaluate critically ill patients in neurologically underserved areas.

“This is good news in many ways,” states lead author of the study, Amelia Adcock, M.D, in a press release issued by Mayo Clinic. “We use telemedicine frequently when evaluating acute stroke patients. This study suggests yet another way telemedicine can enhance patient care. There is a shortage of intensive care unit providers and facilities with round-the-clock patient coverage. Telemedicine can provide a way to ameliorate this shortage and improve early evaluation of critically ill patients.”

Source

http://online.liebertpub.com/doi/10.1089/tmj.2016.0225

Frank Magliochetti is Managing Partner for Parcae Capital

  • North Andover, Massachusetts

This column of posts is directed at the Healthcare Industry.  Frank plans to release new sites dedicated to the industry. Frank currently assists companies who are building, restructuring, transforming and resurrecting there business’s. An example of his client base are, Xenetic Biosciences , IPC Medical Corp, Just Fellowship Corp, Environmental Services Inc., Parsons Post House LLC, ClickStream Corporation as well as having a business talk radio show; The Business Architect on the URBN network.

frankmagliochetti_ParcaeCapital

Color Compounds in Foods Lowering Risk of Lung Cancer?

Color Compound in Some Fruits and Vegetables Could Lower Lung Cancer Risk in Smokers

A pigment in oranges, sweet red peppers, and other fruits and vegetables may lower the risk of lung cancer in smokers, according to a new study.

Nicotine is the primary addictive component of tobacco and some e-cigarette liquids. Medical scientists believe nicotine contributes to cancer promotion and progression by activating nicotinic acetylcholine receptors. The study results suggest that the color compound, known as beta-frankimagliochetti-healthcare-reportcryptoxanthin (BCX), reduces the number of these receptors. This means eating fruits and vegetables high in BCX might reduce the risk of lung cancer resulting from smoking.

Doctors diagnose about 222,500 new cases of lung cancer in the United States each year, according to the American Cancer Society, and more than 155,000 Americans will die from the disease each year. The American Lung Association notes that male smokers are 23 times more likely to develop lung cancer than are men who do not smoke, and female smokers are at 13 times greater risk of developing lung cancer than are non-smoking women.

Causing approximately 7,330 deaths among nonsmokers each year, exposure to secondhand smoke is also a risk factor for lung cancer.

Nicotine and the Growth of Lung Tumors

Tobacco smoke contains more than 7,000 compounds and many of these substances, upon inhalation, act as carcinogens to damage the cells lining the lungs. While nicotine does not cause lung cancer directly, the addictive compound can promote lung tumor growth.

Study co-author Xiang-Dong Wang, of the Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University in Boston, MA, and colleagues provide more insight into how nicotine promotes lung cancer.

frankmagliochetti-helathcare-ReportWhen inhaled, nicotine binds to nicotinic acetylcholine receptor α7 (α7-nAChR), which is a nicotine receptor lying on the surface of the lungs. The binding action prompts a signaling cascade that results in the proliferation of cells and the formation of new blood vessels. Cell proliferation and blood vessel formation are processes involved in the growth of cancer.

Nicotine also increases the production of nicotinic receptors, actually creating more α7-nAChR on which to bind. Providing more nicotinic receptors strengthens the signaling cascade, further encouraging the growth of lung cancer cells. In other words, the more a person smokes or suffers secondhand exposure to smoke, the more receptors he or she develops, the stronger the process encouraging the growth cancer.

Wang and colleagues think that consuming BCX could effectively reduce the number of α7-nAChR receptors on the lungs, thereby decreasing the potential growth of lung cancer cells.

BCX reduced lung tumor growth in laboratory mice

BCX is a carotenoid that gives yellow, orange and red fruits and vegetables their color. Oranges, tangerines, butternut squash, and sweet red peppers contain beta-cryptoxanthin.

In an earlier study, Wang and a team of researchers observed an association between eating foods rich in BCX and a lower risk of lung cancer in humans. In this study, the team focused on pinpointing the mechanisms underlying the link between a BCX-rich diet and lowered risk of lung cancer in smokers.

The scientists administered a daily injection of a carcinogen derived from nicotine to two groups of mice. The test group of mice also received a daily dose of BCX before and after the nicotine injection. The researchers found that, compared with the mice that did not receive the carotenoid, the test group experienced a 52-63 percent reduction in lung tumor growth.frank magliochetti-healthcare-report

The researchers determined 870 micrograms, which is the equivalent to one sweet pepper or two tangerines per day for humans, as the most effective daily dose of BCX for reducing lung tumor growth.

The team then tests BCX on human lung cancer cells, both with and without α7-nAChR. They discovered that lung cancer cells with α7-nAChR receptors were less likely to spread after exposure to the color compound, as compared with lung cancer cells without those receptors.

Further research could provide a better understanding of how consuming foods rich in beta-cryptoxanthin might affect the development of lung cancer in humans.

Source

http://cancerpreventionresearch.aacrjournals.org/content/9/11/875

http://www.cancer.org/cancer/non-small-cell-lung-cancer/about/key-statistics.html

http://www.lung.org/lung-health-and-diseases/lung-disease-lookup/lung-cancer/resource-library/lung-cancer-fact-sheet.html?referrer=http://www.medicalnewstoday.com/articles/315404.php

Frank Magliochetti is Managing Partner for Parcae Capital

  • North Andover, Massachusetts

This column of posts is directed at the Healthcare Industry.  Frank plans to release new sites dedicated to the industry. Frank currently assists companies who are building, restructuring, transforming and resurrecting there business’s. An example of his client base are, Xenetic Biosciences , IPC Medical Corp, Just Fellowship Corp, Environmental Services Inc., Parsons Post House LLC, ClickStream Corporation as well as having a business talk radio show; The Business Architect on the URBN network.

frankmagliochetti_ParcaeCapital

Wearable Sensors: Identify Early Signs of Disease

Wearable Sensors May Help Identify Early Signs of Disease

Wearable technologies may be able to do much more than monitor a person’s blood pressure or total number of steps each day, according to a new study, which suggests wearable sensors can detect early signs of serious disease.

Wearable biosensors, otherwise known as wearables, are a low-cost technology capable of measuring physiological parameters continuously or frequently. Biosensor technology is a promising approach to monitoring physiological measurements, and these devices could potentially identify significant changes in health conditions. Capable of passive and routine recording, the technology can provide immediate real-time delivery of multiple measurements to the wearer or physician. Software simplifies the technology, so using wearable biosensors requires minimal training and attention from the wearer or the clinician.frank-magliochetti-biosensors-healthcare-report

In addition to physiological measurements, wearable devices can capture the wearer’s physical activities, such as walking, running, and biking, often in conjunction with a GPS to provide information about the location of the activity.

Wearables can Track Health and Provide Useful Health Information

The newest generation of portable biosensors can measure health-related physiology changes during various activities. The goal of the study, published in PLOS Biology in January 2017, was to investigate the use of portable biosensors in this capacity and their potential role in health management, specifically in the diagnosis and analysis of disease.

The researchers fitted participants with between one and seven commercially available activity monitors. Over the course of the study, the scientists recorded more than 250,000 daily measurements, including participants’ heart rate, skin temperature, blood oxygen, sleep and calories expended collected from up to 43 individuals. The scientists then combined biosensor information with medical measurements to develop a personalized, activity-based normalization framework, which they used to identify abnormal physiological signals and detect disease.

Several participants reported minor cold-like illnesses in the study’s first two years. At the onset of these illnesses, the sensors detected higher than normal readings for skin temperature and heart rate. Blood tests showed an increase in inflammation before symptoms occurred.

Biosensors-frankmagliochetti-reportThe devices could detect physiological differences, namely variations in heart rate patterns, between insulin-sensitive and insulin-resistant individuals. The researchers also found interesting physiological changes associated with alterations in environment. Participants’ blood oxygen levels decreased during high-altitude flight, for example, and this decrease in oxygen levels correlated with fatigue.

The wearables even detected physiological changes in one person – lead author of the study, Michael Snyder – who later turned out to have Lyme disease. The geneticist never developed the telltale bulls-eye rash that usually precedes the condition, but his smart watch and other sensors detected changes in his own oxygen levels and heart rate. Shortly afterwards, Snyder developed symptoms and received an official diagnosis of Lyme disease.

The researchers concluded by saying the portable biosensors can provide information useful for the monitoring of personal activities and physiology. These devices will likely play an important role in health management and access to care by those traditionally limited by geography or socioeconomic class.

Lead author of the study, Michael Snyder, said in a press release that today’s wearables are “the equivalent of oral thermometers but you’re measuring yourself all the time.” He added wearables might someday act as a “check engine” light that tells the wearer when it is time to see a doctor.

Source

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2001402

http://www.biosciencetechnology.com/news/2017/01/testing-wearable-sensors-check-engine-light-health-0

Frank Magliochetti is Managing Partner for Parcae Capital

  • North Andover, Massachusetts

This column of posts is directed at the Healthcare Industry.  Frank plans to release new sites dedicated to the industry. Frank currently assists companies who are building, restructuring, transforming and resurrecting there business’s. An example of his client base are, Xenetic Biosciences , IPC Medical Corp, Just Fellowship Corp, Environmental Services Inc., Parsons Post House LLC, ClickStream Corporation as well as having a business talk radio show; The Business Architect on the URBN network.

New Study on Personal Health Care Spending

New Study Sheds Light on Personal Health Care Spending Trends in the U.S.

The amount of dollars the Unites Spends on healthcare surpasses every other nation on the planet; all in all accounting for 17% of the economy in the U.S.

Frank Magliochetti

People spend more for health care in the United States than in any other nation on earth and, according to results of a new study published in JAMA, they spend more on diabetes and ischemic heart disease than on any other health condition.

Health care spending continues to rise in the U.S., now accounting for 17 percent of the nation’s economy. health-spending-Frank-MAgliochetti-ReportDespite this spending, there is very little information on how spending varies by condition, age and through time. Joseph L. Dieleman, PhD, from the Institute for Health Metrics and Evaluation, University of Washington and a team of researchers hoped to estimate national spending on personal health care by various factors.

U.S. Spending on Health Care Trends

The researchers included 183 sources of data in the study. Data sources included insurance claims, government budgets, household surveys, facility surveys, and official U.S. records from 1996 to 2013. The scientists grouped ICD-9 codes to form 155 conditions, such as diabetes and ischemic heart disease, for consideration in the study.

One of the more interesting findings of the study was that many of the top 20 conditions of health care spending were chronic conditions with a relatively high prevalence and health burden – many of them were also preventable. This group of conditions included diabetes, ischemic heart disease, chronic obstructive pulmonary disease (COPD), and cerebrovascular disease, all of which are attributable to modifiable risk factors.

Total costs of care

Americans spent $30.1 trillion on personal health care during the years included in the study. The researchers looked at how Americans spent that money, estimating the costs of treating 155 conditions. They found that, at an estimated $101 billion, Americans spent the most on treating diabetes. Spending for ischemic heart disease came in second at $88 billion; spending for low back and neck pain was a close third at $87 billion.

Increases in costs of care

Spending for personal health care increased for 143 of the conditions investigated over the course of the study. Spending on low back and neck pain increased $57 billion during those 18 years, and spending on diabetes US-healthcare-costs-FrankMagliochettiincreased $64 billion during that period.

Of all the conditions included in the study, 57 percent of spending went towards the top 20 conditions. Spending on emergency care and retail pharmaceuticals rose the fastest, at 6.4 percent and 5.6 percent annual growth rate, respectively. When it came to spending on diabetes, 57.6 percent went to pharmaceuticals while 23.5 percent was for ambulatory care.

The study was important in that it was the first to provide modeled estimates of U.S. personal health care spending. The results were revealing in that they showed that diabetes, ischemic heart disease, and low back and neck pain presented the highest costs to American consumers. The study was limited in that it used population-weighted data to represent total national spending, which excludes incarcerated persons and those receiving care from a Veterans Affairs (VA) facility. The University of Washington institutional review board reviewed and approved the project.

The information presented in the study may be useful to health care policy makers and health care providers working towards making health care spending more cost effective for the conditions that most commonly affect people living in the United States.

Source

http://jamanetwork.com/journals/jama/fullarticle/2594716

Frank Magliochetti is Managing Partner for Parcae Capital

  • North Andover, Massachusetts

This column of posts is directed at the Healthcare Industry.  Frank plans to release new sites dedicated to the industry. Frank currently assists companies who are building, restructuring, transforming and resurrecting there business’s. An example of his client base are, Xenetic Biosciences , IPC Medical Corp, Just Fellowship Corp, Environmental Services Inc., Parsons Post House LLC, ClickStream Corporation as well as having a business talk radio show; The Business Architect on the URBN network.

frankmagliochetti_ParcaeCapital

Prenatal Fish Oil – Lower Risk of Asthma in Children

Prenatal Fish Oil Supplementation May Lower Risk of Asthma in Children

Taking fish oil supplements during pregnancy may lower the risk of asthma in children, according to a new study published in the New England Journal of Medicine.

The study shows that supplementation with long-chain polyunsaturated fatty acids (LCPUFA) during the third trimester can reduce the risk of asthma or persistent wheeze in the babies. LCPUFA supplementation also reduces the risk of lower respiratory tract infections (LRTIs) in the offspring.

Pregnant woman

Asthma in Children is a Significant Problem

Asthma is a common problem in children born in the United States. Approximately 7.4 percent of adults and 8.6 percent of children in the nation have asthma, according to the Asthma and Allergy Foundation of America (AAFA), and the number of children with the breathing disorder has been increasing since the 1980s.

Hospitalization rates for asthma are historically higher in the Northeast. Massachusetts has the highest prevalence rate for asthma at 12 percent, according to statistics presented by the Centers for Disease Control and Prevention (CDC), with several other northeastern states following with asthma prevalence rates topping 10 percent.

Fish Oil-Derived LCPUFAs in Pregnancy and Asthma in Offspring

Reduced intake of LCPUFAs may contribute to the increased incidence of wheezing and asthma in children. The researchers in the NEJM study hoped to evaluate the effects of maternal LCPUFA supplementation on offspring.

The scientists enrolled 736 pregnant women at 24 weeks of gestation into the study then randomly assigned the subjects to control and test Asthma-prenatal-fish-oil-frank-magliochetti-report-healthcaregroups. Participants in the test group received 2.4 g of n−3 LCPUFA derived from fish oil each day, while those in the control group took a placebo containing olive oil daily.

The participants’ offspring became the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC) cohort. The researchers followed this group of children for several years, with pediatricians collecting clinical data for visits at 1 week after birth, and then at 1, 3, 6 months and every 6 months until the children reached 36 months of age. The pediatricians then saw the children yearly until the participants were 5 years old.

Neither the researchers nor the participants knew which group the children belonged to for the first three years of follow-up studies. During the next two years of follow-up studies, only the scientists were unaware of the group assignments.

The researchers looked primarily for persistent wheezing and asthma, but included LRTIs, eczema, asthma exacerbations, and allergic sensitization as secondary endpoints.

Ninety-five percent of the 695 children included in the COPSAC cohort completed the 3-year, double-blind follow-up portion of the study. The researchers found that the risk of asthma or persistent wheeze in the treatment group receiving LCPUFA was 16.9 percent, while the risk was 23.7 percent in the control group. This means consuming fish oil-derived LCPUFAs can lower the risk of persistent wheeze or asthma and LRTIs in offspring by nearly 7 percentage points, or one-third. Analysis of the secondary endpoints showed that supplementation reduces the risk of LRTIs, but there was no association between supplementation and asthma exacerbations, allergic sensitization, or eczema.

These findings would be extremely helpful for expectant mothers hoping to reduce the risk of asthma and other breathing problems in their children.

Source

http://www.nejm.org/doi/full/10.1056/NEJMoa1503734

http://www.aafa.org/page/asthma-facts.aspx

https://www.ncbi.nlm.nih.gov/pubmed/12214899

https://www.cdc.gov/asthma/most_recent_data_states.htm

Frank Magliochetti is Managing Partner for Parcae Capital

  • North Andover, Massachusetts

This column of posts is directed at the Healthcare Industry.  Frank plans to release new sites dedicated to the industry. Frank currently assists companies who are building, restructuring, transforming and resurrecting there business’s. An example of his client base are, Xenetic Biosciences , IPC Medical Corp, Just Fellowship Corp, Environmental Services Inc., Parsons Post House LLC, ClickStream Corporation as well as having a business talk radio show; The Business Architect on the URBN network.

frankmagliochetti_ParcaeCapital