August 23, 2019

Healthcare or IT Business?

Healthcare is Becoming an Information Technology Business

Frank Magliochetti declares that; Health information technology now plays an important role in patient care, payment and research, but it wasn’t always this way. Today’s health information technology represents an evolution in record keeping within the healthcare industry. In 1924, the American College of Surgeons adopted the Minimum Standard Document to ensure the recording of a complete case record that included identifying data, chief complaint, personal and family history, physical examinations, laboratory results and x-rays.

In the 20th Century, those records were written by hand and paper copies were generally stored on or offsite, unless required for a hospitalization, doctor visit or research. Sharing patient information with even one consultant or payer typically meant long hours at the copying machine to create thick envelopes filled with data that could take a substantial amount of time to sort; sharing only pertinent information with multiple parties was next to impossible.

Computers and the internet heralded the information age and electronic health records (EHR), which allowed the mass sharing and analysis of data in an instant and without cumbersome and costly paper. In 2004, President George W. Bush created the Office of the National Coordinator (ONC), which now synchronizes HIT in the U.S. healthcare sector. Passed as part of the larger American Recovery and Reinvestment Act of 2009, the Health Information Technology for Economic and Clinical Health (HITECH) Act created incentives to use health care information technology.

Each of these events paved the way to today’s already robust and rapidly growing information technology business. HITECH seems to have worked – as of 2017, 86 percent of office-based physicians had adopted an EHR and 96 percent of all non-federal, acute care hospitals had a certified health IT department or person, according to the Office of the National Coordinator for Health Information Technology.

Today’s HIT Business

To meet the growing demand on the clinical side, hundreds of healthcare IT software and service companies have sprung up across the country. Healthcare IT Skills lists more than 350 such companies, including EHRs, consulting firms, medical device providers, population health, revenue cycle management, analytics, and more.

Healthcare information technology (HIT) merges electronic systems with healthcare to store, share and analyze patient information. The advanced technology also integrates with practice management software to improve office functions that lead to better patient care. HIT now features patient portals that provides patients with access to their medical history, allows them to make appointments, message their practitioner, view bills and even pay bills online. HIT also includes features to make practitioners’ lives easier, such as ePrescribing, remote patient monitoring, and master patient indexes (MPIs) that connects patient databases with more than one database, which allows different departments within a facility to share all of the data simultaneously. MPIs reduce the need for manual duplication of patient records for filling out claims and decrease errors involving patient information, which can result in fewer patient claim denials.

As with any disruptive technology, healthcare information technology has its drawbacks and its critics. Some complain that EHRs have led to practitioners spending more time sitting in front of a computer than talk with patients. Others bemoan the cumbersome federal regulations involved. The benefits of HIT, however far outweigh its downsides.

Advantages of today’s health information technology include the ability to use big data and data analytics to manage population health manage programs effectively, for example, which is impossible with old-fashioned paper records. HIT can use data and analytics to reduce the incidence of expensive and debilitating chronic health conditions, use cognitive computing and analytics to perform precision medicine (PM) tailored to each patient’s needs, and create a means by which academic researchers to share data in hopes of developing new medical therapies and drugs. Lastly, health information technology allows patients to obtain and use their own health data, and to collaborate more fully in their own care with doctors.

Tomorrow’s HIT companies will use artificial intelligence (AI), virtual simulations, and other emerging technologies to further enhance and improve healthcare. Technologies will include digital insurance markets, price transparency tools, cloud storage that will render costly and insecure data centers obsolete, self-serve mobile applications that will eliminate forms and faxes, and centralized clearinghouses that share information across organizations and state lines. Many of these HIT applications will improve labor productivity and, given the fact that wages account for 56 percent of all healthcare spending, improvements in this area could generate significant economic gains.

Information technology will undoubtedly continue in its growth as an important and increasingly essential part of healthcare. The benefits of HIT will also continue to expand, as researchers, doctors, patients and healthcare companies integrate healthcare information technology into their everyday lives and standard business practices

To View Frank Magliochetti Press Releases Please CLICK HERE

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

Vaccinated for Measles?

Even Vaccinated People Can Get the Measles

Measles are a serious infectious disease that can cause serious complications, such as ear infections, inflammation of the throat and lungs, pneumonia, swelling of the brain known as encephalitis, and pregnancy problems. Once very common, measles are now rare thanks to vaccinations, but people who have been vaccinated can still get the measles.

The measles vaccine became widely available in 1963. In the decade prior to the vaccine, measles infected 3 to 4 million people in the United States each year, according to the Centers for Disease Control and Prevention (CDC). Of the cases reported, 400 to 500 people died, 48,000 were hospitalized, and 1,000 suffered encephalitis from measles each year.

Widespread immunization drastically reduced measles rates right away, but the rate of measles began to creep up again in fully vaccinated communities. In 1989, health officials recommended receiving two doses, with the first at 12 to 15 months old and the second at 4 to 6 years old. One dose of the measles vaccine is about 93 percent effective at preventing measles, while two doses are about 97 percent effective. The immunity provided by the measles vaccination is long-term and probably lifelong.

The aggressive two-dose measles vaccination campaign eliminated measles from the U.S. in 2000. Now a measles outbreak is sweeping the nation and 2019 is shaping up to be one of the worst years for measles since its elimination nearly 20 years ago. This trend is worrisome for the very young, the very ill and other people who cannot receive a vaccination, as it puts them at risk of contracting measles. The increase of measles also increases the risk of infection among people who have received a measles vaccination but are still at risk of getting sick from the measles. Doctors refer to this group of people as “vaccine non-responders.”

About Measles Vaccines and Vaccine Non-responders

Immunization with the measles vaccine, known as the mumps-measles-rubella (MMR) vaccine, reduces the risk of infection with measles when exposed to the virus that causes the disease. Immunization with the MMR vaccine can also reduce the severity of symptoms if vaccinated individuals do get the measles.

Vaccinations work by “teaching” the immune system how to recognize and attach the measles virus. Vaccinations involve the introduction of live, attenuated measles virus. That means the vaccine contains a harmless version of the measles virus. The body responds to the presence of the vaccine by creating antibodies that will fight any measles virus they encounter in the future.

Some people have a strong response to immunizations with the measles vaccine, and develop a robust army of measles antibodies. These high-responders have a very low risk of contracting measles when exposed to the virus. Low-responders, whose bodies may have developed only a few antibodies to the measles virus, may contract measles but experience only mild to moderate symptoms.

Certain factors can influence a vaccine’s effectiveness. The viruses inside vaccines can die during the attenuation process to alter its effectiveness, for example. Administering vaccinations at the wrong time or incorrectly can also lower the effectiveness of the vaccine. Host-related factors, such as a person’s genetics, immune status, age, health, and even nutritional status can also affect how well a vaccine works.

While vaccinations may not provide 100 percent protection against the measles, it is still important that everyone who can receive vaccinations have the MMR. Widespread vaccination provides “herd immunity” that prevents serious viruses like measles from spread to those who either cannot receive the vaccine or who are low- or non-responders.

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

CRISPR Potential to Overcome Sickle Cell Disease

CRISPR Has the Potential to Snip Out Sickle Cell Disease

Sickle cell disease affects about 100,000 people in the United States, according to the Centers for Disease Control and Prevention (CDC), and affects millions of people across the globe. A new technology, known as CRISPR, may change all that.

CRISPR is short for “clustered regularly interspaced short palindromic repeats.” It is a group of technologies capable of editing the genes in people with inherited conditions, such as sickle cell disease.

Sickle cell disease is an inherited disorder that affects red blood cells, which transport oxygen to the rest of the body. Specifically, sickle cell disorders affect hemoglobin (Hgb), which is the protein in red blood cells responsible for transporting oxygen. A mutation in a single DNA letter (S) causes the sickle cell trait to be passed from one generation to the next. People with sickle cell disorders inherit an abnormal version of hemoglobin, known as Hgb S, which distorts the shape of the red blood cells.

Red blood cells normally have a round donut shape that allows them to carry an ample supply of oxygen, and to flow through tiny blood vessels smoothly. People with sickle cell inherit a trait that, during a sickle cell crisis, causes the normally round blood cells to resemble the C-shaped farm tool known as a sickle. The sickle cells become hard and sticky, so they clump together instead of flowing freely.

The cells are fragile and prone to rupturing, which can lead to anemia. The deformed cells also die early, which causes a constant shortage of red blood cells. The abnormal shape also means the cells can block blood vessels and damage tissue. This can cause pain, infections, a lung problem known as acute chest syndrome, stroke and other serious health issues during a sickle cell crisis and afterwards.

Current treatments involve blood transfusions, the drug hydroxyurea and bone marrow transplants. Each of these comes with risks and complications.

Enter CRISPR

CRISPR is a group of gene editing technologies that allow scientists to change an organisms DNA by adding, removing or altering specific locations within the gene. Researchers created CRISPR by adapting a naturally occurring gene editing system in bacteria, which captures little snippets of an invading virus’s genes. If the virus ever attacks again, the bacteria use the snippets to create and insert a new DNA sequence into the virus, which effectively changes the virus.

The technology works the same in the lab, except to produce positive results. Scientists first remove the snippet of the “bad” gene that causes sickle cell, using CRISPR to cut the sickle cell gene (S) from a precise location in DNA, and replaces it with healthy genes. Scientists then attach healthy hemoglobin genes to a harmless virus, and then put the virus and the corrected genes it carries back in the patient’s body.

Researchers from the National Institutes of Health performed a clinical trial in which they used CRISPR to edit the genes of nine people with sickle cell disease. The lead researcher, John Tisdale, spoke about their progress and said that all of the people who had received the gene therapy had good hemoglobin levels and that none of the participants had experienced sickle cell crises.

More research is necessary before gene editing becomes a common course of treatment, but CRISPR may someday help all people overcome sickle cell disease and its complications.

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

Pharmacogenomic Testing & Health Care Costs

Pharmacogenomic Testing: Could it Reduce Health Care Cost?

A relatively new type of drug testing could reduce health care costs. This type of testing is known as pharmacogenomic testing. It looks at how the genes a person inherits affects how medications works in his or her body.

Many things can affect how drugs work in the body. Someone’s size can be a factor, for example, as a large person needs more of a drug than does a small person. A person’s diet can also affect how well his or her body absorbs and uses medications.

Genes can also affect how a person’s body responds to drugs. Differences in genetic makeup between people influences what their bodies do to a drug and what a drug does to their bodies. A person’s genetic makeup may cause slow metabolism of medications, for example, and this can cause the drugs to accumulate to toxic levels in the body. Other people metabolize drugs so quickly that drug levels never get high enough to provide a therapeutic effect.

About Pharmacogenomics

In pharmacogenomics, scientists study the genetic differences that affect the response to drugs. The word “pharmacogenomics” is a combination of the word’s pharmacology and genomics; pharmacology is the study of the uses and effects of medications, while genomics is the study of genes and their functions. The aim of pharmacogenomics is to develop safe, effective medications and doses tailored to an individual’s genetic makeup.

Pharmacogenomic testing helps researchers get a better understanding of the relationship between genetics and drug response. This understanding ultimately leads to treatments that work better and cost less.

Most of the medications currently available are “one size fits all,” but these drugs do not work the same way for everybody due to genetic differences. These inherited differences can make it difficult to predict who will benefit from a drug, who will not respond at all, and who will suffer negative side effects. Incorrect predictions can lead to prescribing drugs that do not work, work poorly, or worst of all, cause adverse side effects.

The Food and Drug Administration (FDA) tracks adverse drug reactions and issues “black box warnings” for medications that have the potential for severe side effects associated with genetic predispositions and other causes. These warnings, which apply to more than 200 drugs, help doctors choose the right medications. In some cases, the black box warnings contain genomic information that alerts doctors to the potential risk of adverse reactions and provides dosing instructions according to pharmacogenomic testing results.

Pharmacogenomic testing can reduce health care costs by helping doctors prescribe medications that those patients who are genetically predisposed to benefiting from the drug. This testing can also reduces the risk of adverse events in patients with a certain genetic predisposition.

Negative side effects, also known as adverse drug reactions or adverse drug events, are a significant cause of hospitalizations and death. Adverse drug reactions lead to approximately 1.3 million emergency department (ED) visits and 350,000 hospitalizations every year, according to the Centers for Disease Control and Prevention (CDC). The FDA says that adverse drug events may be the fourth leading cause of death in the United States, causing more than 106,000 deaths annually.

Adverse drug reactions are dangerous, but they are also costly. Adverse drug events cost the nation about $3.5 billion in excess medical costs every year. These drug reactions affect about 2 million hospitalizations each year and prolong these hospital stays by 1.7 to 4.6 days, which significantly adds to the cost of hospital care. Outside the hospital, adverse drug reactions result in more than 3.5 million visits to doctor offices, approximately a million emergency department visits and around 125,000 admissions to the hospital. More than 40 percent of the costs related to adverse drug reactions occurring outside the hospital may be preventable.

About Pharmacogenomic Testing and its Benefits

Researchers are using information from the Human Genome Project to investigate how genetics affects the body’s response to medications. The results help researchers to predict whether a drug will work effectively for a particular person, and to help prevent adverse drug events.

The test requires a small blood or saliva sample. Laboratory technicians perform tests that look for changes or variants in one or more genes, which can affect your body’s response to certain medications.

Pharmacogenomic testing evaluates the genetic factors that affect how your body metabolizes medications. The information gained from the test helps your doctor determine if a particular medication is right for you, calculate the correct dosage to adjust for your metabolism, and to help predict whether you could experience serious side effects from the drug. It can also save money.

Medical and finance expert Frank Magliochetti explains;


Healthcare spending in the United States reached $3.5 trillion in 2017, rising by 3.9% year-on-year and accounting for 17.9% of gross domestic product (GDP), according to data from the Centers for Medicare and Medicaid Services (CMS). Independent federal actuaries estimate that the amount climbed to $3.65 trillion in 2018, and the Organization for Economic Co-Operation and Development (OECD) ranks the United States as the country with the highest health expenditure per capita. According to CMS projections, US spending will continue to grow at an average rate of 5.5% annually through 2026, when it is expected to reach $5.7 trillion and account for 19.7% of GDP. These massive and steadily rising costs are a source of concern for the government, which is constantly exploring means of reining in healthcare expenses, including through preventive measures and investment in research projects. Among the most promising new developments is pharmacogenomic testing, which involves studying the impact of people’s genetic makeup on their response to drugs so that effective and efficient treatment regimens can be devised

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

The Benefits of Genetic Cancer Screening

Genetic Cancer Screening Benefits for You and for Your Family

Genetic cancer screening can be one of the greatest gifts you can give to yourself and to your family.

Cancer seems to “run in families.” Sometimes this is because families share an environment or lifestyle, such as tobacco use, known to increase the risk of cancer. At other times, mutations in the genes passed from one generation to the next increases a person’s cancer risk. Researchers think that genetic mutations play a role in approximately 5 to 10 percent of all cancers, according to the National Cancer Institute.

Researchers have not identified genetic causes for every type of cancer but they have discovered several gene changes, or mutations, which can pass from a parent to child. These mutations can increase a person’s risk of developing certain types of cancer. Scientists refer to these genetic changes as “hereditary cancer syndromes.”

Types of Hereditary Cancer Syndromes

Hereditary Breast & Ovarian Cancer Syndrome (HBOC)

Medical scientists think that about 5 to 10 percent of breast cancer cases are hereditary, according to the American Cancer Society. Hereditary breast and ovarian cancer syndrome (HBOC) is the most common type of inherited breast cancer. HBOC is the result of mutations in two genes, BRCA1 and BRCA2. A woman who inherits mutations of these genes has a higher risk of developing breast and ovarian cancer during her lifetime than does a woman who does not carry that mutation.

Mutations in BRCA genes can also affect men. A man with an inherited BRCA gene mutation has a higher change of developing breast and prostate cancer at some point in his life. Furthermore, some families with a mutation in the BRCA gene have a higher risk of developing pancreatic cancercolon cancer and the skin cancer known as melanoma. Mutations in BRCA genes can greatly increase the risk of lung cancer – smokers have about a 13 percent lifetime chance of lung cancer, according to Cancer Discovery, but that risk nearly doubles to 25 percent for smokers with particular BRCA2 mutation.

Mutations in other genes can increase someone’s risk of developing cancer. Mutations in the EGFR, KRAS, and ALK genes can increase the risk for lung cancer. Changes in the MSH2, MLH1, MSH6, PMS2 or EPCAM genes increases the risk of cancers included in Lynch syndrome, such as colorectal cancer and cancer of the endometrium, ovaries, pancreas, small intestine, liver, stomach, brain and breast. Mutations in the TP53 gene can increase the risk of cancers in Li-Fraumeni syndrome, such as bone cancer, leukemia, brain tumors, cancer of the adrenal glands, breast cancer, and other cancers.

For many people, cancer develops as the result of inherited genetic mutations coupled with the effects of lifestyle choices. This means someone with a mutation of the EGFR, KRAS or ALK gene who smokes has a higher risk of developing lung cancer than does someone with the gene mutations that does not smoke.  

Benefits of Genetic Testing for You and Your Family

Genetic testing provides several advantages, to both you and your family. Finding out the results of your genetic testing brings a sense of relief from uncertainty, for example. Genetic screening can also provide in-depth knowledge about your personal risk of cancer and provide the information you need to make informed lifestyle and medical decisions.

Perhaps the best benefit of all is genetic testing gives you an opportunity to help educate other family members about their risk for cancer so that they can make positive lifestyle and medical choices too.  

If you have mutations of BRCA 1 and BRCA 2 genes, there is a probability that your family members could also have the genetic mutation. Knowing that you have the gene gives you an opportunity to be proactive and to take preventive action, which can change the trajectory of the outcome. For greatest ease of mind, every member of the family tree should undergo CGX testing.

Sources:

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

Telemedicince Vs Bedside Assessment

Telemedicine for Assessing Levels of Consciousness in Comatose Patients: How Does it Compare to Bedside Assessment?

Effective care for comatose patients in intensive care units (ICUs) depends on proper intervention based on reliable assessment. Researchers recently conducted a study at Mayo Clinic Hospital in Arizona to compare the effectiveness of using telemedicine to assess levels of consciousness in comatose patients with standard bedside assessment.

Proper intervention relies on the ability to recognize changes in a comatose patient’s clinical status quickly. This had usually meant that, in order to complete an assessment, the practitioner needed to be in the same room. Advanced medical technology is changing all that and robotic medicine now allows clinicians to assess patients from across the hospital or from across the world.frankmagliochetti_Telemedice_HealthcareTrends-Innovations

Telemedicine has been around since the 1960s, when NASA built telemedicine technology into astronauts’ suits. Prior to this technology, astronauts had to rely on crewmates for an accurate diagnosis. Monitors in the suits sent biometric information about the wearer back to earth for assessment.

Computers have revolutionized telemedicine and the internet helps doctors assess patients living in remote places. This is especially helpful for patients living in underserved areas.

Despite major advances, many still worry about the effectiveness in using this technology for the most critically ill patients. A new study published in Telemedicine and e-Health should help to dispel this fear, with researchers showing that robotic telemedicine can be used successfully to complete assessments in comatose ICU patients.

Testing the Reliability of Telemedicine in the Assessment of Levels of Consciousness

Researchers enrolled 100 patients from Mayo Clinic Hospital in Arizona into the study, which occurred over a 15-month timeframe. Mean age of patient participants was 70.8 years. On average, each examination took just over 5 minutes.

Sixteen medical doctors also participated by using two scoring systems, the Glasgow Coma Scale (GCS) and the Full Outline of UnResponsiveness (FOUR) score, to assess patients’ levels of consciousness. The researchers randomly assigned two practitioners to each patient; one doctor used real-time audio and a visual robotic telemedicine system to perform the assessment and the other clinician conducted an assessment at the patient’s bedside. Each used GCS and FOUR scales.

The researchers used paired t-test and Pearson correlation coefficient (PCC) to compare the GCS and FOUR scores between bedside and Telemedicine_FrankMAgliochetti-HealthcareReportremote physician.

Differences in GCS and FOUR scores between remote and beside assessment were small. The mean Glasgow Coma Scale score at bedside was 7.5 while the mean GCS score for the remote examination was 7.23. Scores were comparable in the FOUR total scores too, with a mean bedside score of 9.63 and a mean remote score of 9.21.

The researchers also asked the clinicians about their overall satisfaction and ease of use. Ninety-five percent of remote providers rated GCS and 89% rated FOUR score as good (4/5).

Conclusions

The study is the first to evaluate the effectiveness of telemedicine in assessing patients with depressed levels of consciousness. The results suggest that doctors can reliably assess levels of consciousness in comatose patients using existing robotic telemedicine technology. Healthcare providers could adopt telemedicine to help evaluate critically ill patients in neurologically underserved areas.

“This is good news in many ways,” states lead author of the study, Amelia Adcock, M.D, in a press release issued by Mayo Clinic. “We use telemedicine frequently when evaluating acute stroke patients. This study suggests yet another way telemedicine can enhance patient care. There is a shortage of intensive care unit providers and facilities with round-the-clock patient coverage. Telemedicine can provide a way to ameliorate this shortage and improve early evaluation of critically ill patients.”

Source

http://online.liebertpub.com/doi/10.1089/tmj.2016.0225

Frank Magliochetti is Managing Partner for Parcae Capital

  • North Andover, Massachusetts

This column of posts is directed at the Healthcare Industry.  Frank plans to release new sites dedicated to the industry. Frank currently assists companies who are building, restructuring, transforming and resurrecting there business’s. An example of his client base are, Xenetic Biosciences , IPC Medical Corp, Just Fellowship Corp, Environmental Services Inc., Parsons Post House LLC, ClickStream Corporation as well as having a business talk radio show; The Business Architect on the URBN network.

frankmagliochetti_ParcaeCapital

Color Compounds in Foods Lowering Risk of Lung Cancer?

Color Compound in Some Fruits and Vegetables Could Lower Lung Cancer Risk in Smokers

A pigment in oranges, sweet red peppers, and other fruits and vegetables may lower the risk of lung cancer in smokers, according to a new study.

Nicotine is the primary addictive component of tobacco and some e-cigarette liquids. Medical scientists believe nicotine contributes to cancer promotion and progression by activating nicotinic acetylcholine receptors. The study results suggest that the color compound, known as beta-frankimagliochetti-healthcare-reportcryptoxanthin (BCX), reduces the number of these receptors. This means eating fruits and vegetables high in BCX might reduce the risk of lung cancer resulting from smoking.

Doctors diagnose about 222,500 new cases of lung cancer in the United States each year, according to the American Cancer Society, and more than 155,000 Americans will die from the disease each year. The American Lung Association notes that male smokers are 23 times more likely to develop lung cancer than are men who do not smoke, and female smokers are at 13 times greater risk of developing lung cancer than are non-smoking women.

Causing approximately 7,330 deaths among nonsmokers each year, exposure to secondhand smoke is also a risk factor for lung cancer.

Nicotine and the Growth of Lung Tumors

Tobacco smoke contains more than 7,000 compounds and many of these substances, upon inhalation, act as carcinogens to damage the cells lining the lungs. While nicotine does not cause lung cancer directly, the addictive compound can promote lung tumor growth.

Study co-author Xiang-Dong Wang, of the Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University in Boston, MA, and colleagues provide more insight into how nicotine promotes lung cancer.

frankmagliochetti-helathcare-ReportWhen inhaled, nicotine binds to nicotinic acetylcholine receptor α7 (α7-nAChR), which is a nicotine receptor lying on the surface of the lungs. The binding action prompts a signaling cascade that results in the proliferation of cells and the formation of new blood vessels. Cell proliferation and blood vessel formation are processes involved in the growth of cancer.

Nicotine also increases the production of nicotinic receptors, actually creating more α7-nAChR on which to bind. Providing more nicotinic receptors strengthens the signaling cascade, further encouraging the growth of lung cancer cells. In other words, the more a person smokes or suffers secondhand exposure to smoke, the more receptors he or she develops, the stronger the process encouraging the growth cancer.

Wang and colleagues think that consuming BCX could effectively reduce the number of α7-nAChR receptors on the lungs, thereby decreasing the potential growth of lung cancer cells.

BCX reduced lung tumor growth in laboratory mice

BCX is a carotenoid that gives yellow, orange and red fruits and vegetables their color. Oranges, tangerines, butternut squash, and sweet red peppers contain beta-cryptoxanthin.

In an earlier study, Wang and a team of researchers observed an association between eating foods rich in BCX and a lower risk of lung cancer in humans. In this study, the team focused on pinpointing the mechanisms underlying the link between a BCX-rich diet and lowered risk of lung cancer in smokers.

The scientists administered a daily injection of a carcinogen derived from nicotine to two groups of mice. The test group of mice also received a daily dose of BCX before and after the nicotine injection. The researchers found that, compared with the mice that did not receive the carotenoid, the test group experienced a 52-63 percent reduction in lung tumor growth.frank magliochetti-healthcare-report

The researchers determined 870 micrograms, which is the equivalent to one sweet pepper or two tangerines per day for humans, as the most effective daily dose of BCX for reducing lung tumor growth.

The team then tests BCX on human lung cancer cells, both with and without α7-nAChR. They discovered that lung cancer cells with α7-nAChR receptors were less likely to spread after exposure to the color compound, as compared with lung cancer cells without those receptors.

Further research could provide a better understanding of how consuming foods rich in beta-cryptoxanthin might affect the development of lung cancer in humans.

Source

http://cancerpreventionresearch.aacrjournals.org/content/9/11/875

http://www.cancer.org/cancer/non-small-cell-lung-cancer/about/key-statistics.html

http://www.lung.org/lung-health-and-diseases/lung-disease-lookup/lung-cancer/resource-library/lung-cancer-fact-sheet.html?referrer=http://www.medicalnewstoday.com/articles/315404.php

Frank Magliochetti is Managing Partner for Parcae Capital

  • North Andover, Massachusetts

This column of posts is directed at the Healthcare Industry.  Frank plans to release new sites dedicated to the industry. Frank currently assists companies who are building, restructuring, transforming and resurrecting there business’s. An example of his client base are, Xenetic Biosciences , IPC Medical Corp, Just Fellowship Corp, Environmental Services Inc., Parsons Post House LLC, ClickStream Corporation as well as having a business talk radio show; The Business Architect on the URBN network.

frankmagliochetti_ParcaeCapital

Wearable Sensors: Identify Early Signs of Disease

Wearable Sensors May Help Identify Early Signs of Disease

Wearable technologies may be able to do much more than monitor a person’s blood pressure or total number of steps each day, according to a new study, which suggests wearable sensors can detect early signs of serious disease.

Wearable biosensors, otherwise known as wearables, are a low-cost technology capable of measuring physiological parameters continuously or frequently. Biosensor technology is a promising approach to monitoring physiological measurements, and these devices could potentially identify significant changes in health conditions. Capable of passive and routine recording, the technology can provide immediate real-time delivery of multiple measurements to the wearer or physician. Software simplifies the technology, so using wearable biosensors requires minimal training and attention from the wearer or the clinician.frank-magliochetti-biosensors-healthcare-report

In addition to physiological measurements, wearable devices can capture the wearer’s physical activities, such as walking, running, and biking, often in conjunction with a GPS to provide information about the location of the activity.

Wearables can Track Health and Provide Useful Health Information

The newest generation of portable biosensors can measure health-related physiology changes during various activities. The goal of the study, published in PLOS Biology in January 2017, was to investigate the use of portable biosensors in this capacity and their potential role in health management, specifically in the diagnosis and analysis of disease.

The researchers fitted participants with between one and seven commercially available activity monitors. Over the course of the study, the scientists recorded more than 250,000 daily measurements, including participants’ heart rate, skin temperature, blood oxygen, sleep and calories expended collected from up to 43 individuals. The scientists then combined biosensor information with medical measurements to develop a personalized, activity-based normalization framework, which they used to identify abnormal physiological signals and detect disease.

Several participants reported minor cold-like illnesses in the study’s first two years. At the onset of these illnesses, the sensors detected higher than normal readings for skin temperature and heart rate. Blood tests showed an increase in inflammation before symptoms occurred.

Biosensors-frankmagliochetti-reportThe devices could detect physiological differences, namely variations in heart rate patterns, between insulin-sensitive and insulin-resistant individuals. The researchers also found interesting physiological changes associated with alterations in environment. Participants’ blood oxygen levels decreased during high-altitude flight, for example, and this decrease in oxygen levels correlated with fatigue.

The wearables even detected physiological changes in one person – lead author of the study, Michael Snyder – who later turned out to have Lyme disease. The geneticist never developed the telltale bulls-eye rash that usually precedes the condition, but his smart watch and other sensors detected changes in his own oxygen levels and heart rate. Shortly afterwards, Snyder developed symptoms and received an official diagnosis of Lyme disease.

The researchers concluded by saying the portable biosensors can provide information useful for the monitoring of personal activities and physiology. These devices will likely play an important role in health management and access to care by those traditionally limited by geography or socioeconomic class.

Lead author of the study, Michael Snyder, said in a press release that today’s wearables are “the equivalent of oral thermometers but you’re measuring yourself all the time.” He added wearables might someday act as a “check engine” light that tells the wearer when it is time to see a doctor.

Source

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2001402

http://www.biosciencetechnology.com/news/2017/01/testing-wearable-sensors-check-engine-light-health-0

Frank Magliochetti is Managing Partner for Parcae Capital

  • North Andover, Massachusetts

This column of posts is directed at the Healthcare Industry.  Frank plans to release new sites dedicated to the industry. Frank currently assists companies who are building, restructuring, transforming and resurrecting there business’s. An example of his client base are, Xenetic Biosciences , IPC Medical Corp, Just Fellowship Corp, Environmental Services Inc., Parsons Post House LLC, ClickStream Corporation as well as having a business talk radio show; The Business Architect on the URBN network.

New Study on Personal Health Care Spending

New Study Sheds Light on Personal Health Care Spending Trends in the U.S.

The amount of dollars the Unites Spends on healthcare surpasses every other nation on the planet; all in all accounting for 17% of the economy in the U.S.

Frank Magliochetti

People spend more for health care in the United States than in any other nation on earth and, according to results of a new study published in JAMA, they spend more on diabetes and ischemic heart disease than on any other health condition.

Health care spending continues to rise in the U.S., now accounting for 17 percent of the nation’s economy. health-spending-Frank-MAgliochetti-ReportDespite this spending, there is very little information on how spending varies by condition, age and through time. Joseph L. Dieleman, PhD, from the Institute for Health Metrics and Evaluation, University of Washington and a team of researchers hoped to estimate national spending on personal health care by various factors.

U.S. Spending on Health Care Trends

The researchers included 183 sources of data in the study. Data sources included insurance claims, government budgets, household surveys, facility surveys, and official U.S. records from 1996 to 2013. The scientists grouped ICD-9 codes to form 155 conditions, such as diabetes and ischemic heart disease, for consideration in the study.

One of the more interesting findings of the study was that many of the top 20 conditions of health care spending were chronic conditions with a relatively high prevalence and health burden – many of them were also preventable. This group of conditions included diabetes, ischemic heart disease, chronic obstructive pulmonary disease (COPD), and cerebrovascular disease, all of which are attributable to modifiable risk factors.

Total costs of care

Americans spent $30.1 trillion on personal health care during the years included in the study. The researchers looked at how Americans spent that money, estimating the costs of treating 155 conditions. They found that, at an estimated $101 billion, Americans spent the most on treating diabetes. Spending for ischemic heart disease came in second at $88 billion; spending for low back and neck pain was a close third at $87 billion.

Increases in costs of care

Spending for personal health care increased for 143 of the conditions investigated over the course of the study. Spending on low back and neck pain increased $57 billion during those 18 years, and spending on diabetes US-healthcare-costs-FrankMagliochettiincreased $64 billion during that period.

Of all the conditions included in the study, 57 percent of spending went towards the top 20 conditions. Spending on emergency care and retail pharmaceuticals rose the fastest, at 6.4 percent and 5.6 percent annual growth rate, respectively. When it came to spending on diabetes, 57.6 percent went to pharmaceuticals while 23.5 percent was for ambulatory care.

The study was important in that it was the first to provide modeled estimates of U.S. personal health care spending. The results were revealing in that they showed that diabetes, ischemic heart disease, and low back and neck pain presented the highest costs to American consumers. The study was limited in that it used population-weighted data to represent total national spending, which excludes incarcerated persons and those receiving care from a Veterans Affairs (VA) facility. The University of Washington institutional review board reviewed and approved the project.

The information presented in the study may be useful to health care policy makers and health care providers working towards making health care spending more cost effective for the conditions that most commonly affect people living in the United States.

Source

http://jamanetwork.com/journals/jama/fullarticle/2594716

Frank Magliochetti is Managing Partner for Parcae Capital

  • North Andover, Massachusetts

This column of posts is directed at the Healthcare Industry.  Frank plans to release new sites dedicated to the industry. Frank currently assists companies who are building, restructuring, transforming and resurrecting there business’s. An example of his client base are, Xenetic Biosciences , IPC Medical Corp, Just Fellowship Corp, Environmental Services Inc., Parsons Post House LLC, ClickStream Corporation as well as having a business talk radio show; The Business Architect on the URBN network.

frankmagliochetti_ParcaeCapital

Prenatal Fish Oil – Lower Risk of Asthma in Children

Prenatal Fish Oil Supplementation May Lower Risk of Asthma in Children

Taking fish oil supplements during pregnancy may lower the risk of asthma in children, according to a new study published in the New England Journal of Medicine.

The study shows that supplementation with long-chain polyunsaturated fatty acids (LCPUFA) during the third trimester can reduce the risk of asthma or persistent wheeze in the babies. LCPUFA supplementation also reduces the risk of lower respiratory tract infections (LRTIs) in the offspring.

Pregnant woman

Asthma in Children is a Significant Problem

Asthma is a common problem in children born in the United States. Approximately 7.4 percent of adults and 8.6 percent of children in the nation have asthma, according to the Asthma and Allergy Foundation of America (AAFA), and the number of children with the breathing disorder has been increasing since the 1980s.

Hospitalization rates for asthma are historically higher in the Northeast. Massachusetts has the highest prevalence rate for asthma at 12 percent, according to statistics presented by the Centers for Disease Control and Prevention (CDC), with several other northeastern states following with asthma prevalence rates topping 10 percent.

Fish Oil-Derived LCPUFAs in Pregnancy and Asthma in Offspring

Reduced intake of LCPUFAs may contribute to the increased incidence of wheezing and asthma in children. The researchers in the NEJM study hoped to evaluate the effects of maternal LCPUFA supplementation on offspring.

The scientists enrolled 736 pregnant women at 24 weeks of gestation into the study then randomly assigned the subjects to control and test Asthma-prenatal-fish-oil-frank-magliochetti-report-healthcaregroups. Participants in the test group received 2.4 g of n−3 LCPUFA derived from fish oil each day, while those in the control group took a placebo containing olive oil daily.

The participants’ offspring became the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC) cohort. The researchers followed this group of children for several years, with pediatricians collecting clinical data for visits at 1 week after birth, and then at 1, 3, 6 months and every 6 months until the children reached 36 months of age. The pediatricians then saw the children yearly until the participants were 5 years old.

Neither the researchers nor the participants knew which group the children belonged to for the first three years of follow-up studies. During the next two years of follow-up studies, only the scientists were unaware of the group assignments.

The researchers looked primarily for persistent wheezing and asthma, but included LRTIs, eczema, asthma exacerbations, and allergic sensitization as secondary endpoints.

Ninety-five percent of the 695 children included in the COPSAC cohort completed the 3-year, double-blind follow-up portion of the study. The researchers found that the risk of asthma or persistent wheeze in the treatment group receiving LCPUFA was 16.9 percent, while the risk was 23.7 percent in the control group. This means consuming fish oil-derived LCPUFAs can lower the risk of persistent wheeze or asthma and LRTIs in offspring by nearly 7 percentage points, or one-third. Analysis of the secondary endpoints showed that supplementation reduces the risk of LRTIs, but there was no association between supplementation and asthma exacerbations, allergic sensitization, or eczema.

These findings would be extremely helpful for expectant mothers hoping to reduce the risk of asthma and other breathing problems in their children.

Source

http://www.nejm.org/doi/full/10.1056/NEJMoa1503734

http://www.aafa.org/page/asthma-facts.aspx

https://www.ncbi.nlm.nih.gov/pubmed/12214899

https://www.cdc.gov/asthma/most_recent_data_states.htm

Frank Magliochetti is Managing Partner for Parcae Capital

  • North Andover, Massachusetts

This column of posts is directed at the Healthcare Industry.  Frank plans to release new sites dedicated to the industry. Frank currently assists companies who are building, restructuring, transforming and resurrecting there business’s. An example of his client base are, Xenetic Biosciences , IPC Medical Corp, Just Fellowship Corp, Environmental Services Inc., Parsons Post House LLC, ClickStream Corporation as well as having a business talk radio show; The Business Architect on the URBN network.

frankmagliochetti_ParcaeCapital