December 30, 2024

Innovations in Genetic Testing

Genetic Testing Innovations

Genetic testing is quickly becoming a cornerstone of healthcare, with new medical technologies and innovations enhancing how scientists work with genetics. Gene therapy, simplified genetic tests, and analysis of fully sequenced genomes are just some of the genetic testing innovations improving healthcare today and in the future.

The global genetic testing market hasrisen over the past few years. This rise is fueled by the increasing prevalence of genetic disorders and growing awareness about the benefits of genetic testing. In fact, the global genetic testing market will likely reach 22.834 billion USD in 2024, registering 11.50 percent CAGR throughout the assessment period (2019-2024), according to Market Research Future.

Genetic testing involves a set of laboratory tests that study the patient’s genetic makeup, and identify any gene mutations or alterations in the patient’s DNA that could potentially lead to the development of genetic disorders. Healthcare professionals can use genetic tests to confirm or rule out a suspected genetic disorder. Genetic testing can also help determine the probability that an individual will develop a genetic disorder or pass one down to the next generation.

Types of Genetic Testing and Innovations

As of August 2017, there were about 10,000 unique genetic test types, and approximately 75,000 genetic tests on the market including direct-to-consumer (DTC) genetic tests like 23andMe – more are under development every year. The general types of genetic tests include:

Newborn testing – used just after birth to detect genetic disorders early, when they are easiest to treat

Diagnostic testing – identifies or rules out a specific genetic condition

Carrier testing – identifies people who carry one copy of a gene mutation that, when coupled with another gene with the same mutation, causes a genetic disorder; this test can help couples determine their risk for having a child with a genetic disorder

Prenatal testing – offered during pregnancy if there is a chance that the baby will have a genetic disorder, prenatal testing detects changes in a fetus’s genes prior to birth

Pre-implantation testing – used to detect changes in embryos created through in-vitro fertilization or other assisted reproductive technology to reduce the risk of having a child with a specific genetic disorder

Predictive and presymptomatic testing – detect gene mutations associated with conditions that develop after birth or even later in life; helpful for people whose family member has a genetic condition, but who have no signs or symptoms of the condition at the time of testing

Forensic testing – uses DNA sequences to identify someone for legal purposes, such as identifying victims of a crime or catastrophe, rule out or implicate a suspect in a crime, or to establish paternity or other biological relationship

Genetic Testing Delivery Systems

Innovations in genetic testing involve new delivery systems, finding new genetic variants, and finding new uses for genetic therapies. Researchers from Fred Hutchinson Cancer Research Center recently started using gold nanoparticles as a scalable delivery vehicle for their CRISPR systems, for example, instead of the “old fashioned” approach of using electric shock or viral vectors to deliver genetic editing tools to DNA.

Another group of researchers analyzed coding genes from nearly 46,000 people to identify four genes that contained rare genetic deviations linked to type 2 diabetes. Pharmaceutical companies could use these genes and the proteins they encode as targets for new diabetes medications and treatments.

Doctors in the United States have begun using CRISPR gene-editing therapy to treat cancer patients for the first time. The University of Pennsylvania is following the first two patients in the country to undergo the new therapy – one with sarcoma and one with multiple myeloma, whose cancers did not respond to conventional treatment.

Genetic testing could even help scientists understand COVID-19; they currently use genetic testing known as RNA or PCR tests, to detect the disease.

genetic testing and innovations clinical trials

The tsunami of gene therapy clinical trials underway right now will create a flood of data, particularly in oncology. Oncology is an area that currently represents a quarter of Phase I and Phase II trials. Much of the push to expand genetic testing will come from the consumers themselves. Patients are currently pushing to expand genetic testing beyond its current confines of rare diseases to cover common conditions, such as Parkinson’s disease. In cases in which insurance does not cover the costs of these tests, patients may seek to enroll in clinical trials. When genetic testing is not affordable or accessible, consumers will turn to at-home genetic testing.

FRANK MAGLIOCHETTI

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Last year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment. Frank is also CEO of ClickStream, ClickStream’s business operations are focused on the development and implementation of WinQuik™, a free to play synchronized mobile app and digital gaming platform. The platform is designed to enable WinQuik™ users to have fun, interact and compete against each other in order to win real money and prizes. Twitter at @ClickstreamC and @WinQuikApp.

Genetic Industry

Frank was appointed Chairman and Chief Executive Officer at Designer Genomics International, Inc. The Company has accumulated a growing body of evidence that highlights a link between alterations in the immune and inflammatory systems and the development of chronic human disease. The Company is visionary and has established itself as a leader in the field of inflammatory and immune genetic DNA and RNA biomarkers that play a causative role in debilitating conditions, such as atherosclerosis/heart disease, diabetes, arthritis, inflammatory bowel disease, post-traumatic stress disorders (PTSD) and cancer.
A proprietary state-of-the art data mining bioinformatics program, called ‘cluster analysis’ will be used to measure disease development susceptibility with potential for earlier diagnosis and intervention. The company is developing a healthcare program based on its proprietary genetic panels that will allow people to be their own healthcare advocate and take an active role in their health status as well as longevity.

Frank Magliochetti News is developing Genetic Innovation News.com the site is devoted to genetic innovations; we encourage contributors – the site wants to broadcast your news, discoveries,and innovations.

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

SOURCES:

https://www.marketresearchfuture.com/reports/genetic-testing-market-2009

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5987210

https://www.genome.gov/dna-day/15-ways/direct-to-consumer-genomic-testing

https://www.23andme.com/

https://ghr.nlm.nih.gov/primer/testing/uses

https://www.nature.com/articles/s41563-019-0385-5

https://www.nature.com/articles/s41586-019-1231-2

https://www.docwirenews.com/docwire-pick/first-u-s-cancer-patients-treated-with-crispr-gene-editing-therapy/

https://www.the-scientist.com/news-opinion/sars-cov-2-spike-protein-shares-sequence-with-a-human-protein-67596

https://asm.org/Articles/2020/April/COVID-19-Testing-FAQs

https://www.mckinsey.com/industries/pharmaceuticals-and-medical-products/our-insights/gene-therapy-coming-of-age-opportunities-and-challenges-to-getting-ahead

Covid-19: The Race for a Vaccine Continues

Covid-19: The Race for a Vaccine

The race to save lives has begun. Scientists around the world are speeding to develop a vaccine for COVID-19, a disease that has claimed the lives of more than half a million lives worldwide, and sickened millions of others. Vaccine development usually takes 10 to 15 years, and the long, involved process takes a tremendous amount of public and private involvement. At the current rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections that cause COVID-19 disease, though, the world does not have 10 to 15 years to wait.

COVID-19 Race for a vaccine

On July 18, 2020, the World Health Organization (WHO) reviewed 23 candidate vaccines in clinical evaluation. Many were still in Phase 1 to establish their safety and dosage at the time of the WHO review, while others were in Phase 2 to establish their performance under ideal and controlled performance. As of that mid-July WHO review, three clinical trials had entered Phase 3 for testing on large numbers of people, although one vaccine trial had not yet recruited candidates.

Why Must We Wait So Long?

Most vaccines in development never make it to licensing – in fact, many vaccine candidates never make to clinical evaluation on real humans because they fail to produce the desired immune response in the pre-clinical stages of testing in cell cultures and lab animals.

Regulators set a high bar for vaccination approval and often require years’ worth of safety data because, unlike medicines that treat diseases, vaccines are administered to healthy people to prevent illness. Releasing a vaccine could potentially do more harm than good, so many regulatory bodies set stiff guidelines for approval.

covid-19-race for A CURE

It is not yet clear what data federal regulators would accept as proof that a vaccine is safe and successful in the middle of the pandemic. On June 30, 2020, the U.S. Food and Drug Administration (FDA) said a vaccine must prevent COVID-19 or decrease the severity of illness in at least 50 percent of people who receive the vaccine. The FDA may consider some vaccine candidates for its Accelerated Approval pathway, but that the vaccine candidate must demonstrate an identifiable immune response or other measure that shows it is reasonably likely that the vaccine would provide clinical benefit. Regulators in other nations have not yet announced what they would consider acceptable criteria for approval, which creates a challenge for vaccine makers trying to gain approval.

More Challenges for Vaccine Makers

Vaccine makers also face challenges determining the best way to trigger the immune response. Vaccines typically work by exposing the body to the antigens of a particular pathogen to activate the immune system without causing disease. Made with weakened or inactivated form of the pathogen, these vaccines are often difficult to develop and produce quickly. Because of the urgent nature of the pandemic, researchers are looking for innovating ways to introduce antigens and otherwise activate an immune response to SARS-CoV-2. Four of the 23 vaccine candidates in clinical testing use an approach that involves engineering messenger RNA (mRNA) that tells human cells how to create the antigens themselves.

RACE FOR A VACCINE COVID-19

Moderna is one of those four companies. On July 15, 2020, the biotech company published data from an early-stage trial that shows its vaccine caused patients to generate an immune response by developing antibodies, although it caused some side effects. Supported by the National Institutes of Health, the study showed volunteers who receive the vaccine produced substantially more neutralizing antibodies than do most patients who have recovered from COVID-19. A second injection administered four weeks after the initial vaccination was necessary to produce a dramatic immune response. Vaccine experts were not impressed, however, concerned that the data was long on text and short on proof.

Other research teams, such as University of Oxford/AstraZeneca are using viral vector vaccines to speed up the process. Viral vector vaccines use a harmless virus as a kind of Trojan horse that carries the pathogen’s genetic material into cells in order to trigger an immune response. The team released more information about its coronavirus vaccine candidate, AZD1222, on July 20, 2020.

Developing a COVID-19 vaccine will be one of the most exciting and important events in human history, with the potential to save millions of lives around the world. Join us next month when we review the next leg of the race for a COVID-19 vaccine.

To View Frank Magliochetti Press Releases Please CLICK HERE

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Last year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment. Most recently; Frank was appointed Chairman and Chief Executive Officer at Designer Genomics International, Inc. The Company has accumulated a growing body of evidence that highlights a link between alterations in the immune and inflammatory systems and the development of chronic human disease. The Company is visionary and has established itself as a leader in the field of inflammatory and immune genetic DNA and RNA biomarkers that play a causative role in debilitating conditions, such as atherosclerosis/heart disease, diabetes, arthritis, inflammatory bowel disease, post-traumatic stress disorders (PTSD) and cancer.
A proprietary state-of-the art data mining bioinformatics program, called ‘cluster analysis’ will be used to measure disease development susceptibility with potential for earlier diagnosis and intervention. The company is developing a healthcare program based on its proprietary genetic panels that will allow people to be their own healthcare advocate and take an active role in their health status as well as longevity.

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

Sources

https://coronavirus.jhu.edu/map.html

https://www.historyofvaccines.org/content/articles/vaccine-development-testing-and-regulation

https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines

https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-takes-action-help-facilitate-timely-development-safe-effective-covid

https://www.fda.gov/patients/fast-track-breakthrough-therapy-accelerated-approval-priority-review/accelerated-approval

https://www.nejm.org/doi/full/10.1056/NEJMoa2022483

https://www.astrazeneca.com/media-centre/press-releases/2020/astrazeneca-and-oxford-university-announce-landmark-agreement-for-covid-19-vaccine.html

Immunotherapy- What You Should Know

Immunotherapy is a type of cancer treatment that uses the body’s own immune system to fight cancer. Unlike traditional treatments that use chemotherapy and radiation to stop the growth of cancer – or to kill cancer cells outright – immunotherapy unblocks the immune system to allow the body to target and destroy the cancer.

The immune system detects and destroys abnormal cells. In fact, the immune system most likely prevents or slows the growth of many types of cancer cells. Immune cells are often found in or near tumors, for example. These cells, known as tumor-infiltrating lymphocytes (TILs), are often a sign that a person’s immune system is fighting the cancer. The National Cancer Institute notes that patients whose tumors contain TILs often fare better than those people whose cancer does not contain these lymphocytes.

While the immune system can prevent or slow the spread of cancer, cancer cells can avoid destruction by the immune system in a number of ways. Cancer cells may undergo genetic changes that make them harder for the immune system to detect, for example, or the surface of cancer cells may have proteins that turn off immune cells. In some cases, cancer cells can even cause the cells around the tumor to interfere with the immune system and prevent the destruction of cancer cells. Immunotherapy helps the immune system fight cancer.

Immunotherapy: Then and Now

Immunotherapy has its roots in 19th century medicine, when two German scientists independently noticed that patients’ tumors shrank after suffering a common skin infection. Bone surgeon William Bradley Coley first attempted to harness the immune system for treating bone cancer in 1891. Discoveries of T cells, interleukins, and other components of the immune system accelerated the research that led to cancer immunotherapy used today.

Medical professionals now refer to immunotherapy as the “fifth pillar” of cancer therapy, joining surgery, chemotherapy, radiation, and targeted therapy. Because it has become such an important approach to cancer treatment, and because of an increasing number of FDA approvals for immunotherapy drugs, a growing number of pharmaceutical companies are now offering immunotherapy drugs. In fact, Grand View Research, Inc. predicts the global cancer immunotherapy market will likely reach $126.9 billion by 2026. This growing market will help more patients get the immunotherapy drugs they need to treat cancer.

Doctors now use immunotherapy to treat a variety of cancers, including:

  • Lung cancer
  • Melanoma and some other types of skin cancers
  • Kidney cancer
  • Bladder cancer
  • Head and neck cancers
  • Lymphoma, which is cancer of the infection-fighting cells of the immune system

“Immunotherapy” is an umbrella term that covers several types of treatment for cancer, which can include:

Immune checkpoint inhibitors – Natural proteins, known as immune checkpoints, prevent the immune system response from being too strong, but they may prevent the immune system response from being strong enough to fight cancer; immune checkpoint inhibitors blocks these checkpoints to allow the body to mount a very strong immune response to cancer cells

T-cell transfer therapy – T-cells are a part of the immune system that recognize and kill viruses and abnormal cells; T-cell transfer therapy involves taking immune cells from the tumor, reproducing them in a lab, and then reintroducing them into the body through a needle in the vein

Monoclonal antibodies – Created in a lab, monoclonal antibodies bind to specific targets on cancer cells, thereby marking the cells for destruction by the immune system

Treatment vaccines – Boosts the body’s immune response against cancer

Immune system modulators – These drugs enhance the immune system’s response to cancer

Clinicians can administer immunotherapy in a variety of ways, including intravenous (IV) through a needle in a vein, oral, and topical preparations in cream form. In cases of bladder cancer, immunotherapy can be delivered via intravesical administration of immunotherapy fluid directly into the bladder.

For more information on immunotherapy for the treatment of cancer, consult with a physician or cancer care specialist.

To View Frank Magliochetti Press Releases Please CLICK HERE

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Last year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment. Most recently; Frank was appointed Chairman and Chief Executive Officer at Designer Genomics International, Inc. The Company has accumulated a growing body of evidence that highlights a link between alterations in the immune and inflammatory systems and the development of chronic human disease. The Company is visionary and has established itself as a leader in the field of inflammatory and immune genetic DNA and RNA biomarkers that play a causative role in debilitating conditions, such as atherosclerosis/heart disease, diabetes, arthritis, inflammatory bowel disease, post-traumatic stress disorders (PTSD) and cancer.
A proprietary state-of-the art data mining bioinformatics program, called ‘cluster analysis’ will be used to measure disease development susceptibility with potential for earlier diagnosis and intervention. The company is developing a healthcare program based on its proprietary genetic panels that will allow people to be their own healthcare advocate and take an active role in their health status as well as longevity.

This image has an empty alt attribute; its file name is GRACE-HEALTH-TECHNOLOGY_Frank-MAgliochetti.jpg

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

Sources

https://www.cancer.gov/about-cancer/treatment/types/immunotherapy

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928196/

https://www.cancerresearch.org/immunotherapy/timeline-of-progress

https://www.grandviewresearch.com/press-release/global-cancer-immunotherapy-market

Top 3 Challenges in Healthcare in 2020

1. Cybersecurity

The medical and healthcare sector collects highly sensitive patient information, which puts the industry in the crosshairs of cybersecurity attacks. There were 2,546 healthcare data breaches involving more than 500 records in the United States between 2009 and 2018, resulting in the in the exposure and theft of 189,945,874 healthcare records – this equates to more than 59 percent of the nation’s population. In 2017 alone, the medical and healthcare sector experienced more than 350 data breaches that exposed 4.93 million patient records.

While experts are still finalizing the breach figures for 2019, it looks to be the worst year yet. Today, the healthcare industry accounts for four out of every five data breaches, according to HIPPA Journal. The cost of these breaches to the industry will likely reach $4 billion in 2020.

Black Book Market Research LLC recently surveyed 2,876 security professionals from 733 provider organizations to identify the reasons healthcare organizations continue to experience data breaches and cyber attacks. They found that budget constraints prevented the replacement of legacy software and devices, which left them more vulnerable to attack. “It is becoming increasingly difficult for hospitals to find the dollars to invest in an area that does not produce revenue,” said the founder of Black Book, Doug Brown, in a press release. Ninety percent of hospital representatives in the survey said that their IT security budgets have remained unchanged since 2016.

2. Transparency

Transparency has been a hot topic for several years, and will continue to be a burning issue into 2020 and beyond. A 2016 survey by Accenture found that 91 percent of consumers wanted to know their out-of-pocket costs before they received care.

Triggered by the Executive Order on Improving Price and Quality Transparency in American Healthcare to Put Patients First issued in June of 2019, the Centers for Medicare & Medicaid Services (CMS) issued new rules to increase price transparency.

The first rule, Calendar Year (CY) 2020 Outpatient Prospective Payment System (OPPS) & Ambulatory Surgical Center (ASC) Price Transparency Requirements for Hospitals to Make Standard Charges Public Final Rule, requires that hospitals provide patients with easily accessible information about standard charges for services and items offered. Standard charges must be available in a single data file that other computer systems can read. Hospital websites must display “shoppable services” information in a consumer-friendly format. This rule takes effect on January 1, 2021.

CMS’s second proposed rule, the Transparency in Coverage rule, would impose price transparency requirements on insurers.

3. Patient-friendly Payment Models

Patient financial responsibility for outpatient, and emergency department care is on the rise, with out-of-pocket costs increasing by 12 percent in 2018, according to TransUnion.

This shift towards patient financial responsibility could bog down invoice and payment processing, particularly for practices that do not have an in-house invoicing and payment processing system geared towards accepting payments from patients. These practices will need to build patient portals, secure payment processing, and other infrastructure to handle such payments and fund administrative costs of maintaining these technologies. Furthermore, they will need to ensure their payment portals and processing systems are compliant with guidelines that protect patient information.

Unfortunately, 90 percent of healthcare providers still use paper and manual payment processes, according to a 2018 InstaMed survey. To make matters worse, 70 percent of consumers said they were confused by medical bills. Not surprisingly, 77 percent of providers said it takes more than a month to collect a payment. To be paid on time, providers must overcome the obstacles of upgrading their payment processing systems and clarify billing.

With a little planning – and a bit of luck – those in the healthcare industry can overcome these challenges and put themselves in a great position for the rest of the decade.

To View Frank Magliochetti Press Releases Please CLICK HERE

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

SOURCES:

https://www.beckershospitalreview.com/cybersecurity/11-of-the-biggest-healthcare-cyberattacks-of-2017.html

https://blackbookmarketresearch.com/health-data-security-and-privacy

https://www.prnewswire.com/news-releases/healthcare-data-breaches-costs-industry-4-billion-by-years-end-2020-will-be-worse-reports-new-black-book-survey-300950388.html

https://www.whitehouse.gov/presidential-actions/executive-order-improving-price-quality-transparency-american-healthcare-put-patients-first/

https://www.cms.gov/newsroom/fact-sheets/cy-2020-hospital-outpatient-prospective-payment-system-opps-policy-changes-hospital-price

https://www.hhs.gov/sites/default/files/cms-9915-p.pdf

https://newsroom.transunion.com/out-of-pocket-costs-rising-even-as-patients-transition-to-lower-cost-settings-of-care/

https://www.businesswire.com/news/home/20190415005538/en/

Laboratory Management Innovations 2019

The Importance of Laboratory Management Systems

Laboratories have been among the heaviest users of information technology since its inception more than 30 years ago. As places where questions are answered and breakthroughs begin, labs have played a defining role in defining and developing information management systems along the way.

The global laboratory information management systems (LIMS) market is growing rapidly. In fact, the research and consulting group, Acumen, anticipates the LIMS market size will around USD 2.4 billion by 2026, with 9.3% CAGR during the forecast time period. Technical advancements in pharmaceutical labs and the increasing need for laboratory automation will likely be the primary drivers behind this growth.

Biotechnological and pharma organizations are investing in research and development, which rely on sophisticated and scalable laboratory management systems for effective management and security, tracking data, patient demographics, billing, and more. To support the explosive growth of research and development, today’s laboratory management systems will need to evolve and grow.

The Evolution of Laboratory Management Systems
Information technology is the glue that holds the laboratory – and modern medicine – together. IT can compress the time and distance separating the lab from the patients and physicians. Laboratory information systems move information from place to place, seamlessly and instantaneously, to put information in the hands of doctors, patients, and interoperating businesses participating in the care, when they need it the most.

Most clinical labs once used laboratory information systems (LIS) to simplify administration and instrumentation tasks, and use laboratory information management systems to make collection, storage, and distribution of patient test results and other data easier. Many labs are now using full-service integrated systems that combine LIS and LIMS functions.

Simply combining several small lab management programs together will not be enough. Today’s LIMS must have advanced features that reduce or eliminate human error, improve real time tracking and time saving, increased revenue, and reduced workload and stress within the lab.

Tomorrow’s lab management systems will build upon today’s technologies, such as the ability to track samples in real time and unique auto-authorization feature that automatically approves reports with normal values. Modern lab solutions allow labs to manage logistics efficiently; assigning barcodes to samples at the collection station and notifying the processing center of the sample collection allows the lab to allocate resources, reagents and material even before the samples reach the processing center.

The next generation of laboratory management systems must be powerful and flexible enough to keep up with the evolving sophistication and specialization of clinical labs and their demands for advanced IT capabilities. Labs are increasing their use of molecular diagnostics, such as next-generation sequencing (NGS) systems that can create terabytes of patient data and analyses in the blink of an eye and other processes, which require a new approach to IT. Labs are also ratcheting up their ability to handle other emerging technologies, such as digital pathology, which present their own heavy-duty imaging storage and analytical processing challenges. Finally, lab management systems must evolve to handle the oncoming tsunami of data resulting from the push towards personalized medicine.

The rapid evolution of IT in healthcare creates an unparalleled opportunity to develop new, advanced laboratory management systems that can handle more data, save more money, and serve even more laboratory clients. The new systems will evolve to handle assay data management, data mining, data analysis, electronic laboratory notebook (ELN) and more.  Lab management systems that do not evolve may become outdated in their prime.

From introducing groundbreaking products to reducing waste and improving sustainability, laboratories are changing the face of research and clinical medicine. Innovations in laboratory management helps labs maintain their forward momentum in the ever-changing world of medical technology.

To View Frank Magliochetti Press Releases Please CLICK HERE

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

Source: https://www.acumenresearchandconsulting.com/laboratory-information-management-system-market

Trends in Healthcare to Watch for in 2020

5 Trends to Watch for in 2020

Healthcare is changing at the speed of light as researchers discover new treatments and as developers create new technologies that improve the health and well-being of the public. A dizzying array of new healthcare products will hit the market in the next year. Here are five of the most important healthcare trends to watch in 2020.

5 Must-Watch Healthcare Trends for 2020

1. AI and Machine Learning

Artificial intelligence (AI) and machine learning use computers that study algorithms and statistical models – and learn from them – without guidance from humans. Machine language systems can solve problems just as a clinician might – by weighing evidence. Unlike a single clinician, though, these systems can simultaneously observe and process a nearly limitless number of inputs.

Using insights from past data to make informed clinical decisions is the essence of evidence-based medicine. Researchers have traditionally used mathematical equations, such as linear regression, to identify and characterize patterns within data. AI uses machine learning to uncover complex associations that fit easily into mathematical equations. Using sophisticated machine learning and very large data sets allows AI to predict outcomes and estimate patient risk faster – and sometimes better – than clinicians and medical researchers.

2. Laboratory Informatics

A rising need for laboratory automation, development of integrated lab informatics solutions, growing demand for biobanks/biorepositories to store millions of biological samples used in research, and the ongoing struggle to comply with regulatory standards is fueling growth for laboratory informatics.

Laboratory informatics (LI) is information technology that uses instruments, software, and data management tools to capture, migrate, process, and interpret scientific data for immediate and future use.

Laboratory informatics will grow from USD 2.6 billion in 2019 to USD 3.8 billion by 2024, according to MarketsandMarkets, and boast a 7.5 percent compound annual growth rate (CAGR) during the forecast period. High accuracy and efficiency of laboratory informatics results, rising burden certain diseases, and increasing applications of LI solutions are driving this market.

3. Silver Technology

In 2018, the number of people over the age of 65 surpassed the number of children younger than 5 years for the first time in history, according to Our World in Data. “Silver technology” provides healthcare solutions that support that aging population.

Technology has historically helped improve the health of older adults through diagnostics, communications, imaging, and health informatics. Silver technology in 2020 will help reframe the delivery of healthcare, and facilitate communication between older adults, their family caregivers, and service providers.

Technology can help older adults live independently longer, manage medications, monitor changes in cognition, stay connected with friends and family members, drive a car, and access healthcare. Some technologies, such as health information technology (HIT), remote monitoring and telehealth, technologies that allow adults to age safely in place, mobile health technologies and workforce-training technologies, will have a profoundly positive effect for older adults in 2020.

4. Wearable Fitness Technology

Fueled by consumer appetite for sophisticated gadgets, rising popularity of wearable fitness and medical devices, growing popularity of the IoT, expanding awareness about the importance of fitness, and the increase in disposable incomes in developing economies, wearable fitness technology will likely trend upwards in 2020. MarketsandMarkets says that the wearable fitness technology market earned USD 5.77 billion in 2016 and predicts it will take in USD 12.44 billion by 2022, growing at a CAGR of 13.7 percent.

Major trends in wearable fitness technology include smartphone apps featuring advanced data analysis, advanced sensors capable of tracking athletic performance and other qualitative attributes, purpose-specific wearables, and even the integration and implantation of technology with and in the human body.

Wearable technology products, such as smart watches and wristbands, spurred an evolution in fitness technology. The wearable fitness technology of 2020 will include a wide variety of smart apparels and other innovative products, such as smart shoesheadbands, and more.

5. 5G Mobile Healthcare Technology

5G will become widely available starting in 2020. In fact, Verizon CEO Hans Vestberg says that half of the United States will have the technology by then.

The transition from 4G to 5G will open new cloud applications for the healthcare industry. 5G provides mobile data speeds that are up to 10 times faster than 4G and up to 100 times faster than other existing networks. Faster speeds will support real-time, high-quality video for telemedicine that allows patients to interact with their care teams, remote patient monitoring, virtual and augmented reality for use in clinician training, and other emerging medical technologies that test the limits of existing network speeds. 5G will also alleviate concerns about internet of things (IoT) and potentially allow billions of monitoring devices and wearables that provide essential information about patients’ well-being.

Spurred by advances in computer technology and research, the medical world will continue to change in 2020 and beyond. These changes will likely help older adults live independently longer and help the next generation be healthier.

To View Frank Magliochetti Press Releases Please CLICK HERE

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

My background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

https://twitter.com/F_Magliochetti1
www.parcaecapitalcorp.com
www.frankmagliochetti.info 

SOURCES

https://www.facs.org/media/press-releases/2019/carrano102919

https://www.marketsandmarkets.com/Market-Reports/lab-informatic-market-203037633.html?gclid=Cj0KCQiAtf_tBRDtARIsAIbAKe1NAHHnFhIGLrwW1avAsxlVwwOrsLY0wjIxMikZeJcNPY_4njamWTsaAu-IEALw_wcB

https://ourworldindata.org/population-aged-65-outnumber-children

https://www.marketsandmarkets.com/Market-Reports/wearable-fitness-technology-market-139869705.html

https://www.wearable-technologies.com/tag/smart-shoes/

https://www.usa.philips.com/c-e/smartsleep/deep-sleep-headband.html

https://www.advisory.com/research/health-care-it-advisor/it-forefront/2019/04/5g-transformation

https://www.cnbc.com/2019/08/01/verizon-ceo-sees-functioning-5g-wireless-in-half-the-us-next-year.html?__twitter_impression=true

Change is in the Future of Healthcare Organizations

Changes in Healthcare Organizations of the Future

From the diseases we face to the technologies we use to treat them, healthcare in the United States is changing rapidly.

Frank Magliochetti confirms: that just a few short decades ago, most people received care from their family doctor and paid for it through private insurance provided by an employer. Diagnostic tests were limited to x-rays and a few blood tests, and treatments involved first generation drug therapies and invasive surgical procedures. Patient records were kept in a dusty basement offsite, and the information they contained was accessed only to provide continuing care to that individual patient. Computerized medical records, advanced fMRI and CT scanning, and robot surgery common today was the stuff of science fiction just 20 years ago.

Tomorrow’s healthcare landscape will be decidedly different from the care provided today, and light-years away from the healthcare of our parent’s day. A number of various factors, such as demographics, legislation, and technology, affect nearly every level of healthcare and affect nearly every person working in healthcare. These factors will drive the major changes occurring in healthcare over the next two to three decades.

The diseases people face will likely change as well. Diseases that were almost unheard of in younger populations years ago, such as obesity, diabetes and heart disease, will become major health issues across the generations.

The use of hospital services will likely grow significantly in the next decade, largely because of the increase in Medicare beneficiaries. The cost of hospital care will also rise; The George Washington University School of Business predicts this cost will increase from 0.9 percent to 2.4 percent of the budget by 2025.

Care will likely center on the patient’s experience, rather than on the needs of the institutions providing that care. Patients will have detailed information, on par with that collected by their doctor or hospital, about their own health and about health in general. The patients of tomorrow will also enjoy greater ownership of that data, and they will play a greater role in the decision-making process when it comes to their own health, well-being and medical care.

The Healthcare of Tomorrow

Healthcare in 2040 is only 20 years away, but it will be vastly different from what we have today. Two decades ago, we could not have envisioned the wearable devices that are commonplace today; medical technology will take us places in the next two decade that we cannot begin to imagine today. The next generation of sensors will likely move from wearable devices to invisible, always-on sensors embedded in devices surrounding us – or even embedded inside of us; medtech companies are already investigating ways to incorporate these always-on biosensors and software into devices that generate, gather and share health data.

By 2040, independent streams of health data will merge to create a multifaceted, complex and highly personalized picture of each individual’s well-being, for example. Artificial intelligence (AI) will allow for wide scale analysis of vast amounts of information and the creation of personalized insights into consumer health. The availability of this data and personalized insights can enable precision real-time interventions that allows patients and their caregivers to get ahead of sickness early enough to avoid catastrophic disease. Armed with a lifetime of highly detailed information about their own health and with a natural penchant for mobility, consumers of 2040 will also probably demand that their health information be portable.

Because of the demand for mobility and information management, technology such as interoperable data and AI will be major drivers of change, but only if the open platforms necessary for mobility and AI are secure. Information technology (IT) professionals will continually develop technologies that process threat data more efficiently and more accurately predict criminal activity.

While nobody can predict exactly what the healthcare landscape will look like in 2040 and beyond, nearly everyone can agree that it will be vastly different from the care we receive today.

Source

https://healthcaremba.gwu.edu/blog/how-we-can-expect-the-healthcare-industry-to-change-in-the-future/

To View Frank Magliochetti Press Releases Please CLICK HERE

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

Healthcare Industry Structural Changes Are Coming

The Structure of the Healthcare Industry will Change Radically

The healthcare industry is changing at a blistering pace. Healthcare policies, technologies, insurance coverage, and the new focus on patient experience have triggered the evolution of healthcare into something yesterday’s providers would never recognize. And, chances are, the healthcare of tomorrow will look drastically different than the care provided today.

Change had come slowly to healthcare industry legislation in the nation’s early years. The first attempt at national health insurance came about in 1905, with the formation of the American Association for Labor Legislation; Speaker of the House Thaddeus Sweet vetoed the bill. The next major change in the healthcare industry didn’t come along until 1965 when, after 20 years of heated debate in Congress, President Lyndon B. Johnson initiated legislation introducing Medicare and Medicaid. The 2010 Patient Protection and Affordable Care Act was the last major healthcare legislation.

While changes to healthcare law and healthcare insurance had came slowly, the nation’s demographics and need for medical care is now changing rapidly. Furthermore, advances in research and medical technology have fueled an astonishing metamorphosis in healthcare.

Factors Contributing to the Changing Landscape of Healthcare

Perhaps the most notable change in healthcare is its explosive growth: healthcare became the largest employer in the United States in the third quarter of 2018, according to The Atlantic.

The nation’s aging population is a major driver of the healthcare job boom. By the year 2025, one-quarter of the workforce will be older than 55. By 2030, more than 170 million people in the United States will have at least one chronic health condition, according to the American Hospital Association (AHA). The rising population of older adults, and the increasing number of people with chronic illnesses, will require a growing pool of healthcare workers. In fact, the U.S. Bureau of Labor Statistics (BLS) expects jobs in the healthcare industry to account for a large share of new jobs created through 2026.

Other factors, including the health insurance market and healthcare regulation, will affect the structure of the healthcare industry. About half of the privately insured are covered under self-insured plans, which can vary dramatically.

The healthcare system is also moving towards a financial model based on value, rather than on volume. This shift will change the focus from treating diseases in hospitals to keeping patients healthy and out of the hospital.

Expect Monumental Changes in the Healthcare Industry

To handle these changes, the structure of the healthcare industry will undergo radical transformation in a number of areas, from insurance to the makeup of the board and the role of clinicians in leading renovations within an organization.

Provider organizations offering insurance products will likely experience substantial restructuring because they are essentially creating new businesses in a highly volatile market. In fact, several health systems have already introduced health plans in recent years, according to the Healthcare Financial Management Association.

Organizations without such products are restructuring, creating regionally focused, value-based care teams and enhancing consumer engagement. Moving towards a value-based system requires increased collaboration between health systems and health plans, the implementation of patient-centric technology, increased adoption of virtual care options, and a greater focus on public health. It also requires greater understanding of patient motivation and behavior, so many healthcare organizations will restructure to include patient experience departments.

Changes in organizational structures will manifest themselves in a number of ways. Evolution of an organization’s structure may include centralization and professionalization of the board to look more like boards in other industries, for example. This shift allows senior business leaders with niche expertise to guide healthcare organizations through insurance, risk management, IT, consumer engagement, investments and capital allocation.

Many healthcare organizations are putting physicians in leadership roles, asking their clinicians to lead clinical informatics, care model transformation, and population health management initiatives. In this way, the Chief Medical Officer (CMO) is evolving into the role of Chief Transformation Officer.

While it is nearly impossible to predict where the healthcare industry will be at the end of the 21st Century, it is safe to say that healthcare in the United States will undergo more changes in the next 80 years than it has in the entire history of the nation.

SOURCES:

To View Frank Magliochetti Press Releases Please CLICK HERE

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

Healthcare or IT Business?

Healthcare is Becoming an Information Technology Business

Frank Magliochetti declares that; Health information technology now plays an important role in patient care, payment and research, but it wasn’t always this way. Today’s health information technology represents an evolution in record keeping within the healthcare industry. In 1924, the American College of Surgeons adopted the Minimum Standard Document to ensure the recording of a complete case record that included identifying data, chief complaint, personal and family history, physical examinations, laboratory results and x-rays.

In the 20th Century, those records were written by hand and paper copies were generally stored on or offsite, unless required for a hospitalization, doctor visit or research. Sharing patient information with even one consultant or payer typically meant long hours at the copying machine to create thick envelopes filled with data that could take a substantial amount of time to sort; sharing only pertinent information with multiple parties was next to impossible.

Computers and the internet heralded the information age and electronic health records (EHR), which allowed the mass sharing and analysis of data in an instant and without cumbersome and costly paper. In 2004, President George W. Bush created the Office of the National Coordinator (ONC), which now synchronizes HIT in the U.S. healthcare sector. Passed as part of the larger American Recovery and Reinvestment Act of 2009, the Health Information Technology for Economic and Clinical Health (HITECH) Act created incentives to use health care information technology.

Each of these events paved the way to today’s already robust and rapidly growing information technology business. HITECH seems to have worked – as of 2017, 86 percent of office-based physicians had adopted an EHR and 96 percent of all non-federal, acute care hospitals had a certified health IT department or person, according to the Office of the National Coordinator for Health Information Technology.

Today’s HIT Business

To meet the growing demand on the clinical side, hundreds of healthcare IT software and service companies have sprung up across the country. Healthcare IT Skills lists more than 350 such companies, including EHRs, consulting firms, medical device providers, population health, revenue cycle management, analytics, and more.

Healthcare information technology (HIT) merges electronic systems with healthcare to store, share and analyze patient information. The advanced technology also integrates with practice management software to improve office functions that lead to better patient care. HIT now features patient portals that provides patients with access to their medical history, allows them to make appointments, message their practitioner, view bills and even pay bills online. HIT also includes features to make practitioners’ lives easier, such as ePrescribing, remote patient monitoring, and master patient indexes (MPIs) that connects patient databases with more than one database, which allows different departments within a facility to share all of the data simultaneously. MPIs reduce the need for manual duplication of patient records for filling out claims and decrease errors involving patient information, which can result in fewer patient claim denials.

As with any disruptive technology, healthcare information technology has its drawbacks and its critics. Some complain that EHRs have led to practitioners spending more time sitting in front of a computer than talk with patients. Others bemoan the cumbersome federal regulations involved. The benefits of HIT, however far outweigh its downsides.

Advantages of today’s health information technology include the ability to use big data and data analytics to manage population health manage programs effectively, for example, which is impossible with old-fashioned paper records. HIT can use data and analytics to reduce the incidence of expensive and debilitating chronic health conditions, use cognitive computing and analytics to perform precision medicine (PM) tailored to each patient’s needs, and create a means by which academic researchers to share data in hopes of developing new medical therapies and drugs. Lastly, health information technology allows patients to obtain and use their own health data, and to collaborate more fully in their own care with doctors.

Tomorrow’s HIT companies will use artificial intelligence (AI), virtual simulations, and other emerging technologies to further enhance and improve healthcare. Technologies will include digital insurance markets, price transparency tools, cloud storage that will render costly and insecure data centers obsolete, self-serve mobile applications that will eliminate forms and faxes, and centralized clearinghouses that share information across organizations and state lines. Many of these HIT applications will improve labor productivity and, given the fact that wages account for 56 percent of all healthcare spending, improvements in this area could generate significant economic gains.

Information technology will undoubtedly continue in its growth as an important and increasingly essential part of healthcare. The benefits of HIT will also continue to expand, as researchers, doctors, patients and healthcare companies integrate healthcare information technology into their everyday lives and standard business practices

To View Frank Magliochetti Press Releases Please CLICK HERE

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries. Earlier this year, he was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com
www.frankmagliochetti.com

Future of Precision Medicine

Will Precision Medicine Become Commonplace?

Will precision medicine become commonplace?

Precision medicine is a relatively new and powerful approach to medical care. Given its current growth rate and potential, precision medicine will likely be commonplace very soon.

Medicine is not always a one-size-fits-all solution – what works for one patient may not work at all for another. Individual differences in biology, environmental factors, and lifestyle may play a role in the risk of disease, affect symptoms, and even influence how well treatment works.

Treatments that shrink tumors or alleviate symptoms of arthritis in some patients, for example, are not always effective for other patients. Precision medicine aims to overcome the influences of biology, environment and lifestyle by matching the right treatments with the right patients.

Precision medicine involves the use of extensive medical testing that identifies unique differences in a patient’s condition, followed by the development of a treatment plan specific to that patient. In other words, doctors will run tests to identify unique characteristics that might make a patient more susceptible or resistant to certain diseases or treatments, and then create personalized treatment plans for each patient.

Precision medicine allows researchers and prescribers to predict which treatments and prevention strategies will work best to treat diseases in which groups of people. In contrast, the one-size-fits-all approach uses treatments and disease strategies designed for the average person.

Past, Present and Future of Precision Medicine

While the term “precision medicine” is relatively new, the concept of providing patient-specific treatment has been around for decades. For example, doctors perform blood tests to match patients with the right type of blood; they have been doing this since the early 1900s.

The advent of modern personalized medicine began about 20 years ago, when oncologists began using targeted therapy to treat HER-2 positive breast cancer. Precision medicine got a boost in 2015 with the introduction of the National Institutes of Health (NIH) Precision Medicine Initiative. NIH introduced the initiative in hopes of moving “the concept of precision medicine into clinical practice.” In other words, the initiative intends to make precision medicine commonplace.

The targeted, personalized approach already has a significant effect on many areas of medicine, including genomics that studies genes and their function, medical devices, and laboratory testing. Patients already benefit from precision medicine, especially patients with cancer. Doctors can use genetic testing to determine if a patient is at high risk for developing certain kinds of cancer, for example. When tests show that a person has a higher risk of cancer, a doctor can suggest ways to lower that risk. Cancerous tumors also provide genetic information that helps doctors develop more effective personalized treatment plans.  

The Precision Medicine Initiative has helped spur the commercial growth of precision medicine. The number of commercialized lab tests, known as predictive biomarker assays, is increasing dramatically. Predictive biomarker assays help doctors, pharmaceutical researchers and manufacturers predict the effectiveness of a treatment in any given patient group. These tests also help classify patients’ unique characteristics, which allow researchers and doctors to come up with the safest, most effective treatment for those specific patients.

Advancements in genome sequencing, an increase in consumer-focused healthcare, and innovations in healthcare information technology (IT) and connectivity have fueled explosive growth in the precision medicine market. Market Watch reports the value of the global precision medicine market at USD 47.43 billion in 2019, and projects the market will grow at a Compound Annual Growth Rate (CAGR) of 12.3 percent to reach a net market size of USD 119.90 billion in 2025.

Precision medicine will also stimulate further research exploring the genetic, environmental, and lifestyle factors that influence the development of disease and response to treatment. This research will likely bring about innovations that make precision medicine commonplace in clinical medicine.

SOURCES

Frank Magliochetti News

Frank Magliochetti News will be centered around reporting on trends, innovations, and news in the healthcare and bio/pharma industries.

Frank Magliochetti News is the latest in a growing network of online publications by Frank.

I’m please we have released Frank Magliochetti News, with so much going on it is my hope that Frank Magliochetti News will shed light on current, relevant, healthcare and pharma industry topics and innovations .  Please take time to head to my personal and corporate sites for news and information.

Earlier this year, Frank was appointed chairman of the board at Grace Health Technology, a company providing an enterprise solution for the laboratory environment.

Frank Magliochetti owes his professional success to his expertise in two areas: medicine and finance. After obtaining a BS in pharmacy from Northeastern University, he stayed on to enroll in the Masters of Toxicology program. He later specialized in corporate finance, receiving an MBA from The Sawyer School of Business at Suffolk University. His educational background includes completion of the Advanced Management Program at Harvard Business School and the General Management Program at Stanford Business School. Frank Magliochetti has held senior positions at Baxter International, Kontron Instruments, Haemonetics Corporation, and Sandoz. Since 2000, he has been a managing partner at Parcae Capital, where he focuses on financial restructuring and interim management services for companies in the healthcare, media, and alternative energy industries.
Media Crush

Mr. Frank Magliochetti MBA
Managing Partner
Parcae Capital

www.parcaecapitalcorp.com